CANCER GENOMICS Lecture 4: Additional Topics

GENOME 541 Spring 2022 May 5, 2022

Gavin Ha, Ph.D.

Public Health Sciences Division **Human Biology Division**

@GavinHa

gha@fredhutch.org

https://github.com/GavinHaLab

GavinHaLab.org

Outline

- 1. Additional Copy Number Analysis Features
 - Allelic copy number analysis
- 2. Estimating tumor heterogeneity
 - Modeling tumor-normal admixture
 - Modeling tumor clonality and heterogeneity
- 3. Assessing Statistical Power for Variant Discovery
 - Power calculation
 - Calibrating sequencing depth for variant discovery
- 4. Structural Rearrangement Analysis in Cancer Genomes
 - Structural variant types predicted from sequencing analysis
 - Complex genomic structural rearrangement patterns

Allele-based Copy Number Analysis

Copy Number Analysis: Allelic Features

Cancer Genome Copy Number Analysis Workflow

Copy Number Analysis Workflow: Allele Features

- Correct GC/mappability biases for tumor read depth
- 2. Identify germline heterozygous SNPs from normal
- 3. Extract read counts at SNPs from tumor
- 4. Perform segmentation and copy number prediction

Copy Number Analysis Workflow: Allele Features

Probabilistic Model for Allelic Copy Number Analysis

Input Data: T different genomic loci

- log ratio data $x_{1:T}$
- reference counts $a_{1:T}$ and read depth $N_{1:T}$ for SNP data

Latent State Model: copy number states

There are 8 possible joint copy number state and allele genotype states.

Transition Model

The transition model is similar to before for matrix $A \in \mathbb{R}^{K \times K}$

Emission Model: joint likelihood for log ratio and allele data

The **emission model** is a mixture of the joint distributions (multivariate)

$$p(x_t, a_t | Z_i = k, N_t, \boldsymbol{\mu^c}, \boldsymbol{\sigma^2}, \boldsymbol{\mu^a}) = \mathcal{N}(x_t | \mu_k^c, \sigma_k^2) \times Bin(a_t | N_t, \mu_k^a)$$

Prior Model

$$p(\boldsymbol{\pi} | \boldsymbol{\delta}^{\boldsymbol{\pi}}) = Dirichlet(\boldsymbol{\pi} | \boldsymbol{\delta}^{\boldsymbol{\pi}})$$

$$p(\mu_k^c | m_k, s_k) = \mathcal{N}(\mu_k^c | m_k, s_k)$$

$$p(\sigma_k^2 | \alpha_k, \beta_k) = InvGamma(\sigma_k^2 | \alpha_k^c, \beta_k^c)$$

$$p(\mu_k^a | \alpha_k, \beta_k) = Beta(\mu_k^a | \alpha_k^a, \beta_k^a)$$

$$p(\boldsymbol{A_{k,1:K}} | \boldsymbol{\delta}^{\boldsymbol{A}}) = Dirichlet(\boldsymbol{A_{k,1:K}} | \boldsymbol{\delta}_k^{\boldsymbol{A}})$$

2. Estimating tumor heterogeneity

- Estimating tumor heterogeneity from copy number analysis
- References:

- ichorCNA Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017).
- HMMcopy Ha et al. Genome Research 22:1995-2007 (2012).
- TitanCNA Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. Genome Research 24:1881-1893 (2014).
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Modeling tumor-normal admixture

Why estimate the model parameters $\mu = \{\mu_0, ..., \mu_5\}$ and $\sigma^2 = \{\sigma_0^2, ..., \sigma_5^2\}$?

Data variability due to sequencing depth (technical) and tumor heterogeneity (biological)

Modeling tumor-normal admixture

The mean (μ) of the copy number state mixture components can inform the tumor fraction.

Recall: the log ratio input data is computed as

$$x_t = \log_2\left(\frac{\hat{N}_t^{Tumor}}{\hat{N}_t^{Normal}}\right)$$

• For number $c_k \in \{1,\,2,\,3,\,4,\,5\}$, a pure tumor with 1.0 tumor fraction copy will have log ratios $\bar{\mu}_{1:K}$

$$\bar{\mu}_{1:K} = \left\{ \log_2\left(\frac{c_{1:K}}{2}\right) \right\} =$$

Modeling tumor fraction as a parameter

A tumor biopsy contains both tumor and normal cells

$$tumor\ signal \approx [(1-n) \times tumor\ CN] + [n \times normal\ CN]$$

Normal

- n is the fraction of non-cancer cells
- (1-n) is the fraction of cancer cells
- Typically $normal\ CN = 2$
- Then, the expected log ratio can be written as

$$\bar{\mu_k} = \log_2\left(\frac{c_k}{2}\right) \qquad \qquad \mu_k = \log_2\left(\frac{2n + (1-n)c_k}{2}\right)$$

Pure tumor

Tumor-normal admixture (Heterogeneous)

Tumor

where $c_k \in \{1, 2, 3, 4, 5\}$ is the tumor copy number for state k

Let's use some examples of *deletions* (CN=1) from the Slide 11:

 $\mu_1 = -0.20$ $\mu_3 = 1.8$ log2 ratio Pure tumor (1.0 TFx) Heterogeneous

Note that this formulation does not account for genome doubling in the tumor which would involve a tumor ploidy parameter ϕ and denominator of the ratio would be $2n+(1-n)\phi$ instead of just 2

Modeling tumor fraction as a parameter

The expected log ratio for copy number state k is

$$\mu_k = \log_2\left(\frac{2n + (1-n)c_k}{2}\right)$$
, where $c_k \in \{1, 2, 3, 4, 5\}$

Recall the likelihood model:

$$p(x_i | Z_i = k, \boldsymbol{\mu}, \boldsymbol{\sigma^2}) = \mathcal{N}(x_i | \mu_k, \sigma_k^2)$$

- Since μ_k is now a function of n, we no longer need to estimate μ_k .
- However, the non-cancer proportion n is what we want to estimate to obtain the tumor fraction (1-n).

$$\frac{p(\mu_k|m_k,s_k) = \mathcal{N}(\mu_k|m_k,s_k)}{p(n|\alpha_n,\beta_n) = Beta(n|\alpha_n,\beta_n)}$$
 Prior for n Log Posterior (with n terms)
$$\log \mathbb{P}(n) = \sum_{t=1}^T \sum_{k=1}^K \gamma(Z_t = k) \log \mathcal{N}(x_t|\mu_k,\sigma_k^2) + \sum_{k=1}^K \log Beta(\mu_k|\alpha_n,\beta_n)$$

- Take the derivative wrt to *n*
- Equate to 0
- 3. Find the roots to estimate n

$$\frac{\partial (\log \mathbb{P}(n))}{\partial \mathbf{u}} \times \frac{\partial \mathbf{\mu}}{\partial n} = \frac{\partial (\log \mathbb{P}(n))}{\partial n} = 0 \text{ , then find } n$$

Since the Beta distribution is not conjugate with the Gaussian, we can use numerical optimization to find \hat{n} that maximizes the log *Posterior*

Copy Number Analysis of Subclonal Heterogeneity

 Subclonal CNA events have weaker signals compared to clonal CNAs because of contribution from non-tumor cells with normal copy number signals

Modeling subclonal copy number

- Add two additional states for subclonal deletion and subclonal gain, $K_{sc} = \{1, 3\}$ and $K = \{0, 1, 2, 3, 4, 5, K_{sc}\}$
- The expected log ratio for subclonal copy number state $k_{sc} \in \{1, 3\}$ is

Normal Tumor w/o event Tumor w/event
$$\mu_{k_{sc}} = \log_2 \left(\frac{2n + 2(1-n)s + (1-n)(1-s)c_{k_{sc}}}{2} \right)$$

- s is the fraction of cancer cells without CNA event
- (1-s) is the fraction of **cancer cells with** CNA event (aka tumor cellular prevalence)

Clonal CNA (Pure, 1.0 TFx)Clonal CNA (0.82 TFx)

..... Subclonal CNA (0.29 CP)

Tumor Fraction = 0.82
Cellular Prevalence = 0.29

3. Assessing Statistical Power for Variant Discovery

- Power calculation
- Calibrating sequencing depth for variant discovery
- References:
 - Cibulskis et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology 31:213-19 (2013)
 - Adalsteinsson et al. Nature Communications 8:1324 (2017). DOI: 10.1038/ s41467-017-00965-y

Sensitivity of Mutation Calling is Subject to Heterogeneity

- Tumor biopsy samples may exhibit intra-tumor heterogeneity
 - The tumor fraction (aka tumor content) influences our ability to detect an SNV at a specific locus
- Here are some questions that warrant statistical considerations:
 - What is our power (sensitivity) to detect an SNV given the read depth?
 - What read depth is required to detect an SNV at a specific power?
 - If we do not detect a mutation, is it because (1) there is no mutation? Or (2) we do not have sufficient power to make a confident call?
- Answering these questions with theoretical power calculations can help to calibrate the required sequencing depth and the expectation to detect mutations.

Power Calculation for Mutation Detection

- Let μ be the expected probability of observing a variant read at a locus
- Tumor fraction α , copy number c, and multiplicity M

$$\mu = \frac{\alpha M}{\alpha c + 2(1 - \alpha)}$$
average average tumor normal copies copies

"average # of chromosomes with the variant tumor cells in the sample"

"average # of chromosomes from all cells in sample"

- $\mu = \frac{\alpha}{2}$ for tumor copy number c=2 and multiplicity M=1 (for heterozygous SNV, e.g. AB)
- The power to detect ≥ 3 variant reads at locus i with N_i total read depth is estimated using a binomial exact test N

$$p(X \ge 3) = \sum_{k=3}^{N} Bin(k | N, \mu)$$

$$p(X \ge 3) = 1 - \left[Bin(0 \mid N, \mu) + Bin(1 \mid N, \mu) + Bin(2 \mid N, \mu)\right]$$

Power Calculation for Mutation Detection

What is our power (sensitivity) to detect an SNV at a specific tumor fraction?

4. Structural Rearrangement Analysis in Cancer Genomes

4. Structural Rearrangement Analysis in Cancer Genomes

- Structural variant types predicted from sequencing analysis
- Complex genomic structural rearrangement patterns
- Brief overview of software tools

Abnormal chromosomal rearrangements are prevalent in cancer

David Huntsman, BC Cancer Agency

(location/configuration)

Structural Variants: Sequence Features

Simple Structural Variants: Deletion & Tandem Duplications

Deletion Tandem Duplication Sample Sample (Reference (Reference Discordant read Discordant read Split read Split reads

Simple Structural Variants: Inversions & Translocations

Inversion **Translocation** Sample Sample (Reference Reference (Discordant read Split read Discordant read Split reads

Complex Structural Variants of 2+ more events

Complex Event (non-overlapping)

Complex Event (overlapping)

Complex Structural Variant: Example of PTEN deletion

Brief History of Genome Rearrangement Discoveries in Cancer

Breakage-Fusion-Bridge (BFB) Cycles

Chromothripsis: Catastrophic DNA shattering

Stephens et al. *Cell* **144:**27-40 (2011) Korbel and Campbell. *Cell* **152**:1226-36 (2013)

Concurrent Breakage-Fusion-Bridge & Chromothripsis

Umbreit et al. Science 368:282 (2020)

Zhang and Pellman. CSH Symp 80:117-37 (2016)

Chromoplexy: Inter-dependent disruption of DNA within close spatial proximity

Yi and Ju. Expt. Mol. Med. 50:98 (2014).

Alterations of oncogene regulation and genome topology

Translocation

Battey et al. Cell 34:779-87 (1983).

Duplication of Enhancer

Zhang et al. Nat Genet 48:176-82 (2016).

Enhancer Hijacking

Beroukhim, Zhang, Meyerson. Nat Genet 49:5-6 (2017).

Gröschel et al. *Cell* **157**:369-81 (2014).

Northcott et al. *Nature* **511**:428-34 (2014).

Hnisz et al. Science 351:1454-58 (2016).

Weischenfeldt et al. Nat Genet 49:65-74 (2017).

Extra-Chromosomal DNA: Double Minutes & Neo-chromosomes

Garsed et al. Cancer Cell 26:653-67 (2014).

FRED HUTCH

Double Minute

Neo-Chromosomes

Structural Variation Tools for Cancer Genome Analysis

Popular SV Methods for Cancer Genomes

SV Breakpoint Methods	Discordant Reads	Split Reads	Assembly	Software	References
DELLY	✓	V		https://github.com/dellytools/delly	Rausch et al. Genome Biol (2012)
LUMPY	~	✓		https://github.com/ arq5x/lumpy-sv	Layer et al. Genome Biol (2014)
GRIDSS	~	✓	✓	https://github.com/ PapenfussLab/gridss	Cameron et al. Genome Res (2017)
SVABA	✓	✓	✓	https://github.com/ walaj/svaba	Wala et al. Genome Res (2018)
BRASS	~	✓	V	https://github.com/ cancerit/BRASS	Sanger Pipeline

Over 70 tools!

Complex Rearrangements	Methods	References	
Chromothripsis	ShatterSeek ShatterProof	Cortés-Ciriano et al. Nat Genet (2020) Govind et al. BMC Bioinf (2014)	
Chromoplexy	ChainFinder	Baca et al. Cell (2013)	
Extra-chromosomal DNA	AmpliconArchitect	Deshpande et al. Nat Commun (2019)	
SV clusters/footprints	ClusterSV GRIDSS	Li et al. Nature (2020) Cameron et al. Genome Res (2017)	

