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1. Introduction to Cancer Genome Analysis


2. Probabilistic Methods for Mutation Detection


3. Probabilistic Methods for Profiling Copy Number Alteration 


4. Additional Topics: Tumor Heterogeneity, Mutation Detection 
Power, Structural Variation

Overview of Cancer Genomics Module



Homework Assignments and Office Hours

TA for Module: Anna-Lisa Doebley (adoebley@uw.edu)


Homework #5 


Due: May 5th


Virtual Office Hours 


• Week of May 2
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Homework #6 


Due: May 12th


Virtual Office Hours 


• Week of May 9

Date/Time and Zoom link will be provided in Class

mailto:adoebley@uw.edu
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1. Intro to Cancer Genome Alterations

• Genomic alterations in cancer: drivers vs passengers, somatic vs germline

• Tumor evolution and heterogeneity


2. Overview of Cancer Genome Analysis

• Computational strategy and workflow

• Tumor DNA Sequencing 

• Types of genomic alterations predicted from tumor sequencing

• Methods/tools/algorithms in following lectures


3. Primer on statistical modeling

• Binomial probability distribution, Bayesian statistics, parameter learning

Outline: Introduction to Cancer Genome Analysis



The hallmarks of cancer

• All cancers exhibit many of these 
hallmarks that lead to tumor 
growth


• Genome instability & mutation 
is an enabling characteristic that 
can result in multiple hallmarks

5Hannahan & Weinberg. Cell 144:646-74 (2011) 



Cancer is a disease of the genome

Cancer progression results from mutations acquired throughout lifetime


• Few driver mutations, many passenger mutations


• Mutational process can be intrinsic and from environmental mutagens

6Stratton, Campbell & Futreal. Nature 458:719-24 (2009) 
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Variant or Mutation or Alteration or Polymorphism

• Changes in the genome sequence of a sample compared to a reference sequence


Germline Variant

• Chromosomes: 22 autosomal pairs + 1 sex pair 


- Each set inherited from maternal and paternal germline cells

• Variant inherited from one or both parental chromosomes

• Source of genetic differences between ancestral populations and individuals

• Polymorphism: >1% frequency in a population


Somatic Variant

• Mutation acquired during individual’s lifetime

• Important to identify in sporadic cancers and other non-familial diseases

Genomic Variation: Somatic and Germline 
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1. Single nucleotide base substitutions

• Germline single nucleotide 

polymorphism (SNP)

• Somatic single nucleotide variant (SNV)


2. Small insertions or deletions

• Germline or somatic insertion or 

deletion (INDEL)

• Small indels: 1 bp - 20 bps

• Large indels: 20 - 10,000 bps

Types of Genomic Variation: Small/Short mutations

ATTT
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normal cell

chromosome in

tumor cell

Single nucleotide variant

AG AG

heterozygous

somatic

variant

germline

variant

Insertion-Deletion (INDEL)
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3. Copy number changes

• Germline copy number variant (CNV) or 

polymorphism (CNP) 

• Somatic copy number variant (CNV) or 

alterations (CNA)

• Size > 1 kbps, typically mega-bases 

(depending on resolution)

4. Structural rearrangements


• Germline or Somatic structural variant (SV)

• Simple events: deletion, duplication, inversion, 

translocation

• Single nucleotide resolution for breakpoints

• Size > 20 bps, typically kilo-bases to mega-

bases

Types of Genomic Variation: Large alterations

Structural rearrangements

translocation telomere 
capture

focal rearrangement
tandem duplication

deletion

long-range rearrangement

gain

loss

translocation telomere 
capture

focal rearrangement
tandem duplication

deletion

long-range rearrangement

gain

loss

translocation telomere 
capture

focal rearrangement
tandem duplication

deletion

long-range rearrangement

gain

loss

or

Copy number alterations+ Chr.1 - Chr.2q telomeric loss focal copy-number 
alterations

gain

loss

SegmentsAneuploidy

whole

chromosome

chromosome 

arm

Diploid



Types of Genomic Variation in Cancer
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Tumors exhibit different levels of heterogeneity
Across patient populations:

1. Cancer types: between primary tumors of 

different organs or tissue-of-origin (eg. 
Breast and lung cancers)


2. Tumor subtypes: between subset of 
patients with tumors having similar 
molecular features (e.g. ER+ and ER- breast 
cancers)


3. Same-subtype: between tumors from 
different patients


Within an individual patient:

4. Inter-tumor: between tumors within a patient  

5. Intra-tumor heterogeneity: between cells 

within a tumor lesion (e.g. tumor clones, 
stromal cells, infiltrating lymphocytes)

11Grzywa et al. Transl Oncol. 10:956-75 (2017) 



Cancer Genes: Driver vs Passenger Genomic Alterations
How do we find the mutated genes that drive cancer?

• Significantly Mutated Genes: recurrently mutated genes in patient cohorts

• Account for covariates (e.g. gene length, expression, replication timing)

12Bailey et al. Cell 173:371-85 (2018) https://www.cbioportal.org/

Top 20 Driver genes

33 Cancer types

10,437 Tumors

10,098 mutations


TTN (1676 mutations)

TP53 (814 mutations)

1144

Lung


Cancers

https://www.cbioportal.org/


Tumors exhibit different levels of heterogeneity
Across patient populations:

1. Cancer types: between primary tumors of 

different organs or tissue-of-origin (eg. 
Breast and lung cancers)


2. Tumor subtypes: between subset of 
patients with tumors having similar 
molecular features (e.g. ER+ and ER- breast 
cancers)


3. Same-subtype: between tumors from 
different patients


Within an individual patient:

4. Inter-tumor: between tumors within a patient  

5. Intra-tumor heterogeneity: between cells 

within a tumor lesion (e.g. tumor clones, 
stromal cells, infiltrating lymphocytes)

13Grzywa et al. Transl Oncol. 10:956-75 (2017) 



Tumors undergo genome evolution and clonal expansion 

• Clonal diversity may have implications for treatment resistance


• Dynamics of clones can change in the blood and metastases

Van Loo and Voet. Curr Opin Genet Dev (2014) 14



Tumor genome evolution selects for cellular phenotypes 

15Aparicio & Caldas. NEJM. 368:842-51 (2013) 



Inferring intra-tumor genomic heterogeneity from sequencing

• Combined signals from normal and multiple populations of tumor cells.


• Cellular prevalence: proportion of tumor cells harboring event


• Discuss further in Lecture 4…
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Inferring evolutionary history of a tumor from sequencing
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D BC AMutations (eg. SNVs)

Adapted from Beerenwinkel et al. Syst. Biol. 64:e1-25 (2015) 

Sequencing

Data

Clonal Cell

Populations 

Evolutionary

History

1. Mutation Calling & Analysis2. Infer clonal 
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2. Overview of Cancer Genome Analysis

• Computational strategy and workflow


• Tumor DNA sequencing 


• Whole genome vs whole exome vs targeted sequencing


• Types of genomic alterations predicted from tumor sequencing


• Methods/tools/algorithms in following lectures



General Workflow of Tumor Genome Sequencing (1)

• Tumor and Normal pairing

• Distinguish somatic and germline 

alterations


• Capture baits can be used to select regions

• e.g. whole exome or targeted gene panels


• Potential sources of error can arise

1. 8-oxoG transversions (C>A/G>T)

2. PCR errors and GC content bias

3. Sequencing errors

19
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Genome Sequencing: Massively Parallel Sequencing

20
https://www.broadinstitute.org/files/shared/illuminavids/sequencingSlides.pdf

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf


Genome Sequencing: Sequence vs Physical Coverage

Sequence Coverage = number of 
sequenced reads spanning locus


Physical Coverage = number of 
DNA fragments spanning locus


• Mutation detection rely on 
sequence coverage


• Rearrangement detection rely on 
both

21Meyerson, Gabriel & Getz. Nature Review Genetics 11:685-96 (2010) 
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Whole Genome Sequencing Whole Exome Sequencing Targeted Gene Sequencing
• Genome-wide (unbiased)

• 0.1-100x genome coverage

• Exons (2% of genome)
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• Target regions (1-5Mb)
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• Cost-effective

• Least sequencing required

• Panel design costs

• Coding/Non-coding mutations

• Copy number alterations

• Structural variation

• Coding mutations (all genes)

• Copy number alterations

• Gene fusions rearrangements
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Types of Genomic Alterations Predicted from Sequencing
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1000 Genomes Project (https://www.internationalgenome.org/)

UK10K (https://www.uk10k.org/)


The 100,000 Genomes Project 

(https://www.genomicsengland.co.uk/)

• Rare disease, cancer, infectious disease


Genome 10K Project (https://genome10k.soe.ucsc.edu/)

• Genomic “zoo” of 16,000 vertebrate species


Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/)

Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/)

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)

International Cancer Genome Consortium (ICGC) (https://icgc.org/)

Genome Sequencing: International Consortia & Projects

https://www.internationalgenome.org/
https://www.uk10k.org/
https://www.genomicsengland.co.uk/
https://genome10k.soe.ucsc.edu/
http://exac.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://portal.gdc.cancer.gov/
https://icgc.org/
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Cancer Genome Sequence Data: Databases & Online Resources

https://portal.gdc.cancer.gov/

https://portal.gdc.cancer.gov/
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Cancer Genome Sequence Data: Databases & Online Resources

https://www.cbioportal.org/

https://www.cbioportal.org/
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Cancer Genome Sequence Data: Databases & Online Resources
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3. Primer on statistical modeling
• Probability 


• Unsupervised learning, probability rules & Bayes’ theorem


• Binomial distribution, Bayesian statistics


• Beta-binomial model example


• Mixture models, EM inference


• References:

• Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 

9780262018029


• Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science 
and Statistics). Springer. ISBN: 0387310738


• https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf


Sequencing Data Analysis Requires Probabilistic Models

• Sequencing data contain uncertainty due to 


• Technical noise from imperfect measurements & errors


• Biological features in the signal measurements


• How do we predict genomic alterations accounting for these features and noise?


• Need approaches to learn the patterns of these features from the data…


Types of machine learning: 


– Supervised: output data , input data , and training set 


• Classification (  are labels), Regression (  is continuous)


– Unsupervised: Only given input data , learn the patterns of the data


• E.g. clustering input data  into  clusters by estimating their assignments 

y x D = {(x, y)}
y y

D = {x}
x K z

29



Primer: Probability Theory

Let  be a random variable. The probability for the event  for some value  
is  or  for short. Let  be another random variable.


Probability Rules


• Sum rule: 


• Product rule:  and 


• Conditional Probabilities: 


• Marginal Probabilities: 


• Bayes’ Theorem (rule): 

X X = x x
p(X = x) p(x) Y

p(X) = ∑Y p(X, Y )
p(X, Y ) = p(Y |X)p(X) p(Y, X) = p(X |Y )p(Y )

p(Y |X) = p(X, Y)
p(X)

p(X) = ∑Y p(Y, X) = ∑Y p(X |Y )p(Y )

p(Y |X) =
p(X, Y )

p(X)
=

p(X |Y )p(Y )
∑Y′￼

p(X |Y′￼)p(Y′￼)
30



Binomial Distribution: Referee Coin Toss Example


• A referee has a coin that he uses to decide which team gets first possession. She tossed the coin  times last 
season, once per game. We assume this coin was fair and had a probability  for showing a head. 
We kept track of the number of heads  that appeared.


• What is the probability of seeing a specific number of heads? e.g.  out of  tosses 


Probability mass function 


• Let  be the random variable representing the number of heads. If the probability of heads is , then  has a 
binomial distribution,  or  where 


 


• My coin-toss example: for  out of  and a fair coin 


N
μ = 0.5

x
x = 25 N = 40

X μ X
X ∼ Bin(N, μ) p(X = x |N, μ) = Bin(x |N, μ)

Bin(x |N, μ) = (N
x )μx(1 − μ)N−x

x = 5 N = 11 μ = 0.5

p(X = 5 |N = 11,ρ = 0.5) = Bin(5 |11,0.5) = (11
5 )0.55(1 − 0.5)11−5

Probability distribution: Binomial

31
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Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example


• A referee has a coin that he uses to decide which team gets first possession. She tossed the coin  times last 
season, once per game. We assume this coin was fair and had a probability  for showing a head. 
We kept track of the number of heads  that appeared.


• What is the probability of seeing a specific number of heads? e.g.  out of  tosses 


Probability mass function 


• Let  be the random variable representing the number of heads. If the probability of heads is , then  has a 
binomial distribution,  or  where 


 


• Our coin-toss example: for  out of  and a fair coin 


N
μ = 0.5

x
x = 25 N = 40

X μ X
X ∼ Bin(N, μ) p(X = x |N, μ) = Bin(x |N, μ)

Bin(x |N, μ) = (N
x )μx(1 − μ)N−x

x = 25 N = 40 μ = 0.5

p(X = 25 |N = 40,μ = 0.5) = Bin(25 |40,0.5) = (40
25)0.525(1 − 0.5)40−25

32

 


number of ways the 25 heads 

is observed among the sequence of 

40 tosses.


(N
k )



• Suppose there are  different referees who toss the same 

coin   times and come up with head 

counts . 


• Assuming the referees' tosses are independent and 

identically distributed (iid), what is the probability of 

observing the head counts given the coin (e.g. )?


   


• What if the coin wasn’t fair and the probability of heads, , 

might not be 0.5?

T
N = {1,…, NT}

x = {1,…, xT}

μ = 0.5

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

μ
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• What is the probability of heads, , of this coin given the evidence?


• We can estimate this model parameter using 

maximum likelihood estimation


 


 


  

μ

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

log p(x1:T |N1:T, μ) =
T

∑
i=1

log Bin(xi |Ni, μ)

̂μ =
∑T

i=1 xi

∑T
i=1 Ni

Maximum likelihood estimation (MLE)

34

Likelihood

MLE

Log-likelihood

1.Log of the likelihood

2.Take the derivative wrt to 

3.Equate to 0

4.Solve for 

μ

μ

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf
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Bayesian Statistics: Prior distribution for model parameters

Likelihood for Binomial Model


 


• MLE uses the evidence to estimate parameter  but our 
sample size is small and MLE may overfit


• Zero count or sparse data problem: If you have a bad record keeper who only tallies coin tosses from 
referees who never tosses a tail, then does that mean the concept of tails on a coin does not exist at all?


• Can we capture a more natural expectation of how a coin might behave? Also, what if we have some 
knowledge that the coin might be biased?


Prior Distribution for binomial parameter, 


• The proportion of heads is between 0 and 1 ( ) and can be sampled from a distribution itself


•  can be drawn from a Beta distribution, which is in the interval , with hyper-parameters  and 


 

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

̂μ

μ

μ ∈ [0,1]
μ [0,1] α β

μ ∼ Beta(α, β)
p(μ) = Beta(μ |α, β)

35

Likelihood

Prior

# of tosses (N) # of heads (x) Prop. of heads

Referee 1 40 25 0.63

Referee 2 42 35 0.83

Referee 3 39 27 0.69

Referee T xT NT xT/NT

Likelihood



Bayesian statistics: Posterior for Beta-Binomial Model (1)
Binomial likelihood and Beta prior


•   different head counts  for  sets of tosses and a prior distribution on  
(prob. of heads)


   


• To estimate parameter  in a Bayesian framework


• We need the posterior, , but only have  and 


• Recall Bayes’ Theorem: 

 


• The posterior is our belief state by combining evidence from observations and our prior beliefs.

T x = {1,…, xT} N = {1,…, NT} μ

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

p(μ) = Beta(μ |α, β)

μ
p(μ |x) p(x |μ) p(μ)

p(Y |X) = p(X |Y)p(Y)
∑Y′￼p(X |Y′￼)p(Y′￼)

∝ p(X |Y ) p(Y )

36
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Bayesian statistics: Posterior for Beta-Binomial Model (2)
Beta-Binomial Model: Posterior distribution

• To estimate the model parameter  in a Bayesian framework, we compute the posterior, 


  


• Beta is a conjugate prior for the binomial; the product of binomial and Beta has the form of a Beta


 


μ p(μ |x)

p(μ |xi) ∝ Bin(xi |Ni, μ) × Beta(μ |α, β)

p(μ |xi) ∝ Bin(xi |Ni, μ) × Beta(μ |α, β) = Beta(μ |xi + α, Ni − xi + β)

37

Figure 3.6 in Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press

PosteriorLikelihood Prior

Prior Only

Beta(2,2)
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Bayesian statistics: MAP estimate
Beta-Binomial Model: Posterior distribution 


 


• Then, what is the probability of heads, , of this coin given the evidence and the prior?


Maximum a posteriori (MAP) estimate 


• From the posterior, we can estimate the parameter using the maximum a posteriori (MAP), 


• MAP refers to the mode of the posterior distribution and the mode of a Beta is 


• Since the posterior has the form of a Beta distribution, then the MAP is 

•    


 


  


  

p(μ |xi) ∝ Bin(xi |Ni, μ) × Beta(μ |α, β) = Beta(μ |xi + α, Ni − xi + β)

μ

̂μMAP
α − 1

α + β − 2
α′￼− 1

α′￼+ β′￼− 2

α′￼= xi + α
β′￼= (Ni − xi) + β

̂μMAP =
xi + α − 1

Ni + α + β − 2

38

Section 3.3 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

α′￼ β′￼

Posterior

MAP

1. Log of the posterior

2. Take the derivative wrt to 

3. Equate to 0

4. Solve for 

μ

μ



Mapping the Referee Example to Mutation Calling 

Data

Referees 

For each Referee 


• Coin Tosses:  

• Count of heads: 

• Count of tails: 


Parameters

Probability to draw coins: 

Probability of heads for 3 types of coins 




Responsibilities

Probability that Referee  used coin : 

1,…, T
i
Ni

xi
Ni − xi

πfair, πheads, πtails

μfair, μheads, μtails

i k γ(Zi = k)

39

Data

Genomic loci 

For each locus 


• Depth (total reads):  

• Count of reference reads: 

• Count of variant reads: 


Parameters

Probability of genotypes: 

Probability of reference base for 3 genotypes: 




Responsibilities

Probability that locus  has genotype : 

1,…, T
i

Ni
xi

Ni − xi

πAA, πAB, πBB

μAA, μAB, μBB

i k γ(Zi = k)

Referee Coin Toss Example Mutation Calling from Sequencing Data



Mixture Models: Online Tutorial and Resource

fiveMinuteStats (https://stephens999.github.io/fiveMinuteStats/) 


by Dr. Matthew Stephens, Professor in Statistics & Human Genetics at University of Chicago


1. Introduction to mixture models with probabilistic derivations and R code


• Examples with Bernoulli and Gaussian models


• https://stephens999.github.io/fiveMinuteStats/intro_to_mixture_models.html


2. Introduction to EM with Gaussian Mixture Model example and R code


• https://stephens999.github.io/fiveMinuteStats/intro_to_em.html 

40
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Homework #5: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.


• Learn the parameters and infer the genotypes 


• Annotate the mutation status for a set of genomic loci.


• Expected outputs for each question will be provided so that you can check your code.


• RStudio Markdown and Python Jupyter Notebook templates provided.


Due: May 5th, 2022


Office Hours with Anna-Lisa Doebley (adoebley@uw.edu)


• Monday, May 4, 2-3pm


• Wednesday, May 6, 2-3pm
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