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Overview of Cancer Genomics Module

1. Introduction to Cancer Genome Analysis
2. Probabilistic Methods for Mutation Detection
3. Probabilistic Methods for Profiling Copy Number Alteration

4. Additional Topics: Tumor Heterogeneity, Mutation Detection
Power, Structural Variation
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Homework Assignments and Office Hours

TA for Module: Anna-Lisa Doebley (adoebley@uw.edu)

Homework #5 Homework #6
Due: May 8th Due: May 15th
Office Hours Office Hours
- Monday, May 4, 2-3pm - Monday, May 11, 2-3pm

+  Wednesday, May 6, 2-3pm *  Wednesday, May 13, 2-3pm

12902,
v/é/.;t FRED HUTCH


mailto:adoebley@uw.edu

Outline: Introduction to Cancer Genome Analysis

1. Intro to Cancer Genome Alterations
Genomic alterations in cancer: drivers vs passengers, somatic vs germline

Tumor evolution and heterogeneity

2. Overview of Cancer Genome Analysis
Computational strategy and workflow

Tumor DNA Sequencing
Types of genomic alterations predicted from tumor sequencing

Methods/tools/algorithms in following lectures

3. Primer on statistical modeling
Binomial probability distribution, Bayesian statistics, parameter learning
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The hallmarks of cancer
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* All cancers exhibit many of these proliferativge growthg
signaling suppressors
hallmarks that lead to tumor
Deregulating Avoiding
growth cellular immune
energetics destruction

- Genome instability & mutation

Resisting Enabling
: : i cell replicative
Is an enabling characteristic that .. minortallty

can result in multiple hallmarks

=
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instability &
mutation
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angiogenesis invasion &
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Cancer is a disease of the genome

Cancer progression results from mutations acquired throughout lifetime
- Few driver mutations, many passenger mutations

« Mutational process can be intrinsic and from environmental mutagens

. . . . . Chemotherapy-
" : : Early clonal Benign Early invasive Late invasive :
Fertilized egg Gestation Infancy Childhood  Adulthood expansion oy dancer pefhenlsmn i ggil'_srteann;e

Intrinsic I

mutation processes Environmental

and lifestyle exposures Mutator
O Passenger mutation
_ g . phenotype Chemotherapy e=====m
¢ Driver mutation
A Chemotherapy
resistance mutation 1-10 or more
> driver mutations
10s-1,000s of mitoses 10s-100s of mitoses 10s-100,000 or more
depending on the organ depending on the cancer passenger mutations
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Genomic Variation: Somatic and Germline

Variant or Mutation or Alteration or Polymorphism
Changes in the genome sequence of a sample compared to a reference sequence

Germline Variant
Chromosomes: 22 autosomal pairs + 1 sex pair
Each set inherited from maternal and paternal germline cells
Variant inherited from one or both parental chromosomes
Source of genetic differences between ancestral populations and individuals

Polymorphism: >1% frequency in a population
Somatic Variant

Mutation acquired during individual’s lifetime
Important to identify in sporadic cancers and other non-familial diseases
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Types of Genomic Variation: Small/Short mutations

1. Single nucleotide base substitutions Single nucleotide variant
Germline single nucleotide heterozygous
polymorphism (SNP) ™I "I somatic
varian

Somatic single nucleotide variant (SNV)

germline

G A G )
variant

chromosome in chromosome in

2. Small insertions or deletions normal cell tumor cell

Germline or somatic insertion or TAGGE 1 5 TAGG TAGGE ‘BT --G deletion
deletion (INDEL)

Small indels: 1 bp - 20 bps
Large indels: 20 - 10,000 bps

GA GA GA G[TAJA insertion

Insertion-Deletion (INDEL)
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Types of Genomic Variation: Large alterations

3. Copy number changes Copy number alterations
Germline copy number variant (CNV) or Piploid Aneuploldy Segments
polymorphism (CNP) gain |
Somatic copy number variant (CNV) or
alterations (CNA)
chromosome ra |
Size > 1 kbps, typically mega-bases arm L_170%8
(depending on resolution) . I
4. Structural rearrangements chromosome
Germline or Somatic structural variant (SV) l l
Simple events: deletion, duplication, inversion, fofa';ear;a”?er:e”t '°”_9'range rearrangement
translocation C__aln i geln mE———
Single nucleotide resolution for breakpoints eton or
Size > 20 bps, typically kilo-bases to mega- B — loss =:=
. bases Structural rearrangements
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Types of Genomic Variation in Cancer

Single nucleotide variant Copy number alterations
Diploid Aneuploidy Segments
heterozygous homozygous
T T T A somatic A somatic gain ||
variant variant
germline chromosome F=n
G A G variant G A arm | 1 loss
chromosome in  chromosome in deletion whole I
normal cell tumor cell (loss of heterozygosity) chromosome |
TAGG TAGG TAGG T--G deletion l l
focal rearrangement long-range rearrangement
- —>
tandem duplication gain TEE—ETT—
GAR 1 5 GA GAR SBEG[TAJA insertion (——— o
deletion
_I*
= loss

Insertion-Deletion (INDEL) —— ———
“ Structural rearrangements

e
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Tumors exhibit different levels of heterogeneity

Across patient populations:

1. Cancer types: between primary tumors of
different organs or tissue-of-origin (eg.
Breast and lung cancers)

2. Same-subtype: between tumors from

different patients

3. Tumor subtypes: between subset of
patients with tumors having similar
molecular features (e.g. ER+ and ER- breast
cancers)

Within an individual patient:
4. Inter-tumor: between tumors within a patient

5. Intra-tumor heterogeneity: between cells
within a tumor lesion (e.g. tumor clones,
stromal cells, infiltrating lymphocytes)
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Levels of heterogenei

a Intratumor

Primary tumor

Metastatic tumor

b Intertumor
Primary-metastatic

Metastatic-metastatic @

00T ®®® Subclones

©®® Primary tumors

Cc

Interpatient

Metastatic tumors

Heterogeneity bases

. Point mutations, SNVs
. Insertions and deletions
. Amplifications

.Allelic losses, LOH

- Karyotype aberrations

d Genome

WT Pﬂma,y Mut.

/§\

Metastatic tumors

compared to other subclones

. Mirrors heterogeneity on the level of

genome/epigenome
Low'  (Primary High

/i\

Metastatic tumors

e Transcriptome/Proteome

. Different patterns of gene expression
. Over- or underexpression of some genes

f Epigenome

. Different patterns of DNA
methylation and noncoding
RNA regulation

. Differences in chromatine
and histone structure

Non
metnyl.  Primary  Methyl.
P A

Metastatic tumors

Grzywa et al. Trans! Oncol. 10:956-75 (2017)



Cancer Genes: Driver vs Passenger Genomic Alterations

How do we find the mutated genes that drive cancer?
- Significantly Mutated Genes: recurrently mutated genes in patient cohorts
»Account for covariates (e.g. gene length, expression, replication timing)

" . R273UHIC.and5more Top 20 Drlver genes ::_TAS
2 TP53 (814 mutations) . . 33 Cancer types TOR
s 1 ! 10,437 Tumors DICER
- I . 10,098 mutations NFE2L2
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Tumors exhibit different levels of heterogeneity

Across patient populations:

1. Cancer types: between primary tumors of
different organs or tissue-of-origin (eg.
Breast and lung cancers)

2. Same-subtype: between tumors from
different patients

3. Tumor subtypes: between subset of
patients with tumors having similar
molecular features (e.g. ER+ and ER- breast
cancers)

Within an individual patient:

4. Inter-tumor: between tumors within a patient

. Point mutations, SNVs
. Insertions and deletions
. Amplifications

.Allelic losses, LOH

- Karyotype aberrations

5. Intra-tumor heterogeneity: between cells
within a tumor lesion (e.g. tumor clones,
stromal cells, infiltrating lymphocytes)

WT Pﬂma,y Mut.

/§\
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y Metastatic tumors

. Different patterns of gene expression

. Over- or underexpression of some genes
compared to other subclones

. Mirrors heterogeneity on the level of
genome/epigenome

Low'  (Primary High

/i\

Metastatic tumors

neity
a Intratumor b Intertumor c Interpatient
Primary-metastatic @
Metastatic-metastatic @
®
L o
°
Primary tumor
. .
e . o .
[ ]
Metastatic tumor
Primary tumors ® 0 0@ Vetastatic tumors
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d Genome e Transcriptome/Proteome  |f Epigenome

. Different patterns of DNA
methylation and noncoding
RNA regulation

. Differences in chromatine
and histone structure

Non
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Tumors undergo genome evolution and clonal expansion

Clonal diversity may have implications for treatment resistance

Dynamics of clones can change in the blood and metastases

site of primary tumour distant organs

CTCs ‘

most recent common ancestor
i ’ overt metastases

I3 driver mutation

X4 passenger mutation
;f/,t FRED HUTCH
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Van Loo and Voet. Curr Opin Genet Dev (2014) 14



Tumor genome evolution selects for cellular phenotypes

'

Contact-independent growth Clonal genotype
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Inferring intra-tumor genomic heterogeneity from sequencing

Heterogeneous tumour biopsy

ool
=S 8l Sede =

CNA/LOH events Normal cell Tumour cell

Combined signals from normal and multiple populations of tumor cells.

Cellular prevalence: proportion of tumor cells harboring event

Discuss further in Lecture 4...
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Inferring evolutionary history of a tumor from sequencing

Evolutionary
History

Clonal Celi
Populations

Sequencing
Data

Percentage of
cells with SNVs 70%
(out of all cells)

A Set of SNVs

40% AB

7%

ABC  ABD

.IA

® A W Clones @ Normal

Mutations (eg. SNVs)

Number of SNVs

D CB A

7 2330 70
mutation frequencies [%]

"/

3. Infer evolutionary
(phylogenetic) tree
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2. Infer clonal
prevalence

X/

1. Mutation Calling & Analysis

Adapted from Beerenwinkel et al. Syst. Biol. 64:¢1-25 (2015)
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2. Overview of Cancer Genome Analysis

Computational strategy and workflow

Tumor DNA sequencing

Whole genome vs whole exome vs targeted sequencing
Types of genomic alterations predicted from tumor sequencing

Methods/tools/algorithms in following lectures

18



General Workflow of Tumor Genome Sequencing (1)

Tumor Matched Normal
» Tumor and Normal pairing :go,\g%}:gg
L Niet: : : : O 2
Distinguish somatic and germline e

alterations )

DNA %@Q %Q
isolation

v ®

» Capture baits can be used to select regions  ragmentaton =~ —mx
\4
 e.g. whole exome or targeted gene panels  tray -.—_-—_@'_—z

construction - — F—

Tumor and

- Potential sources of error can arise Norma DNA
1. 8-0x0G transversions (C>A/G>T) l iwﬁipé”;ﬁs
2. PCR errors and GC content bias " Y—"@
3. Sequencing errors Sequencing TR ]

—aa Bh—aa

£P08
v/é/} FRED HUTCH

19



Genome Sequencing: Massively Parallel Sequencing

A. Library Preparation

Genomic DNA
l Fragmentation
o -
==
Adapters - - =
- —
l Ligation
I e
Sequencing T T
Library B ———
L

NGS library is prepared by fragmenting a gDNA sample and
ligating specialized adapters to bath fragment ends.

B. Cluster Amplification

Flow Cell

Bridge Amplification
Cycles

Clusters

Library is loaded into a flow cell and the fragments are
hybridized to the flow cell surface. Each bound fragment

is amplified into a clonal cluster through bridge amplification.

C. Sequencing

it T i I

gl 35
E:/;f}%j‘2 E )

Sequencing Cycles ( )

Digital Image
Data is exported to an output file l

Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...

Cluster 4 > Read 4: ATAC... Text File

Sequencing reagents, including fluorescently labeled nucleo-
tides, are added and the first base is incorporated. The flow

cell is imaged and the emission from each cluster is recorded.

The emission wavelength and intensity are used to identify
the base. This cycle is repeated “n” times to create a read
length of “n” bases.

D. Alignment and Data Anaylsis

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
Baade AGATGGTATTG
o GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

Reference
Genome

AGATGGTATTGCAATTTGACAT

Reads are aligned to a reference sequence with bioinformatics
software. After alignment, differences between the reference
genome and the newly sequenced reads can be identified.

Paired-End Reads

<

Read 2

Reference m—— -

Alignment to the Reference Sequence

T ——
N —
_—)
L ——

=
q
(4
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https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
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Genome Sequencing: Sequence vs Physical Coverage

| 5 | | :— ] I I

Sequence Coverage = number of

-
sequenced reads spanning locus

Sequence = 4 E Physical = 4

b 5 Physical Coverage = number of
Paired I mmeiiem e DNA fragments spanning locus
End ==--e-mm mmecmm s mmeeccmm mmeseem
Sequence =2 | Physical-=4 * Mutation detection rely on
< e - sequence coverage
Paired - T Rearrangement detection rely on
| both
R Sequence =1 i Physical = 7
".[/5 FRED HUTCH 21
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General Workflow of Tumor Genome Sequencing (2)

Tumor and
Normal DNA Mutations Copy Number Structural
¥ Capture (SNV, INDEL) Alterations Variants
I with Baits Rearrangement
_J i = -S;:W— _Gain  Deletio chei i chs
= — e
seorony M- T =B —_— =EE == ==
PDabda Dab4a Pl S ] L g :
DPaba baba P
Aignment pab eb ebese Dabe Daba hr1 h
R — — I I I N I . I E——
Normal e (— T T T T T T - TaE D a4
Whole Genome Whole Exome N — M N N N N N - aE B o
or I I - aE B T
Targeted Panel

* Genome-wide (unbiased)
+0.1-100x genome coverage

* Exons (2% of genome)
- 50-500x target coverage

- Target regions (1-5Mb)
+100-25000x target coverage

* More sequencing required
* Expensive

* Less sequencing required
* Cost-effective

* Least sequencing required
* Panel design costs

- Coding/Non-coding mutations
- Copy number alterations
| FREY. Structural variation

N
()
~'
(4

<8
~
=

+ Coding mutations (all genes)
- Copy number alterations

- Gene fusions rearrangements

+ Coding mutations (selected)
- Targeted rearrangements

22



Types of Genomic Alterations Predicted from Sequencing

Mutations Copy Number Structural
(SNV, INDEL) Alterations Variants

" Rearrangement

Lecture 2 Lecture 3 Lecture 47
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Genome Sequencing: International Consortia & Projects

1000 Genomes Project (https://www.internationalgenome.org/)

UK10K (httpSZ//WWW.Uk1 Ok.org/) IGSR: The International Genome Sample Resource

f 4o j‘l' . v
Providing ongoing support for the 1000 Genomes Prolect data B T,
‘ 4 ¥ ,‘ 4

The 100,000 Genomes Project
(https://www.genomicsengland.co.uk/)

pS: g icseng UK10K
. . . . Rare Genetic Variants in Health and Disease
Rare disease, cancer, infectious disease = 10 K

Genome 10K Project (https://genome10k.soe.ucsc.edu/) Genomics CZ:J

Genomic “zoo” of 16,000 vertebrate species

,;y:v,' UNAERETY OF CALSCRMA
0 SNTH CROT e
S \ ) Insttute

Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/)

Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/) L~ ‘. %
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) o Sl AV S |
International Cancer Genome Consortium (ICGC) (https://icgc.org/) ('[NOM[ 10K

P
A5 International
/."77 [ Cancer Genome
":I.élf FRED HUTCH & _-’ Consortium 24
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Cancer Genome Sequence Data: Databases & Online Resources

zAI;IENB;:;N;‘E;{:TTITUTE Qi Projects %% Exploration & Analysis £ Repository Q Quick Search  Manage Sets  #) Login = Cart[fJ iii GDC Apps

Harmonized Cancer Datasets

Genomic Data Commons Data Portal

Get Started by Exploring:

[0 | Projects %% | Exploration 4= | Analysis £ Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Sum Mary Data Release 22.0 - January 16, 2020

PROJECTS PRIMARY SITES CASES
[e4 & 67 & 83,709
FILES GENES MUTATIONS
[1526,931 £ 22,872 # 3,142,246

P
X ot

i 25‘ FRED HUTCH https://portal.gdc.cancer.gov/ o5


https://portal.gdc.cancer.gov/

Query Quick Search Beta!

Select Studies for Visualization & Analysis:

PanCancer Studies

Cell lines

Adrenal Gland

Ampulla of Vater

Data Sets Web APl R/MATLAB Tutorials FAQ News Visualize Your Data About

Download

0 studies selected (0 samples)

Please cite: Cerami et al., 2012 & Gao et al., 2013

Quick select: | TCGA PanCancer Atlas Studies = = Curated set of non-redundant studies

PanCancer Studies

[7) MSK-IMPACT Clinical Sequencing Cohort (MSKCC, Nat Med 2017)
[7) Pan-Lung Cancer (TCGA, Nat Genet 2016)
[”] Pediatric Pan-cancer (Columbia U, Genome Med 2016)

10945 samples @ & &
1144 samples © 8 &
103 samples @ 8 &

Cancer Genome Sequence Data: Databases & Online Resources

a" cBioPortal

Login
What's New @cbioportal ¥
cBioPortal
!") @cbioportal

We are hosting a webinar series to teach cBioPortal
features to beginner and advanced users. Sessions
will be held on five consecutive Thursdays at 11 AM
EDT, starting on April 30th. Please register here:
bit.ly/cbioportal-web...

‘-! D ADAvE -l

Sign up for low-volume email news alerts

Biliary Tract 9 Cell lines
Subscribe
Bladder/Urinary Tract 15 [7) Cancer Cell Line Encyclopedia (Broad, 2019) 1739 samples @ & &
M il i i <] .
- Cancer Cell Line Encyclopedia (Novartis/Broad, Nature 2012) 1020 samples @ 8 € Cancer Studies
Bone 2 ] NCI-60 Cell Lines (NCI, Cancer Res 2012) 67 samples @ 8 & i . :
The portal contains 283 cancer studies (details)
Bowel 10
Adrenal Gland Cases by Top 20 Primary Sites
Breast 18 Adrenocortical Carcinoma Breast [N
["] Adenoid Cystic Carcinoma Project (2019) 1049 samples @ 8 & Prostate [
CNS/Brain e () Adrenocortical Carcinoma (TCGA, Firehose Legacy) 92 samples @ & € CNS/Brain I--lllllH
Cervix » ) Adrenocortical Carcinoma (TCGA, PanCancer Atlas) 92 samples @ 8 & Lung |
Lymphoid
Esophagus/Stomach 14 Ampulla of Vater Bowel
{
. Ampullary Carcinoma Kidney |
ye 3 .
|| Ampullary Carcinoma (Baylor College of Medicine, Cell Reports 2016) 160 samples @ 8 & Stomach ,‘
loid
Head and Neck 13 shad
Biliary Tract Bladder
Kidney 17 . . Skin
Cholangiocarcinoma
Uterus
Liver 8 ‘:‘ Cholangiocarcinoma (MSK, Clin Cancer Res 2018) 195 samples @ 8 & Head/Neck
|} Cholangiocarcinoma (National Cancer Centre of Singapore, Nat Genet ... 15 samples @ 8 & Oray
Lung 21 ["] Cholangiocarcinoma (National University of Singapore, Nat Genet 2012) 8 samples @ 8 & Thyroid '.l.
[~ Cholangiocarcinoma (TCGA, Firehose Legacy) 51 samples @ 8 & .
Lymphoid 20 — Liver [
[ Cholangiocarcinoma (TCGA, PanCancer Atlas) 36 samples @ 8 & S '[7
Myeloid 9 [T Intrahepatic Cholangiocarcinoma (JHU, Nat Genet 2013) 40 samples @ 8 & P '-
1
~+ INTRAHEPATIC CHOLANGIOCARCINOMA Pancreas |}
l." > Other 5 [”) Intrahepatic Cholangiocarcinoma (Shanghai, Nat Commun 2014) 103 samples @ 8 & Soft Tissue |
4} FRED HUTCH , .
> OvaryFalople Tubs ¢ camawercacer  https://www.cbioportal.org/ 2000 4000 6000 8000 10000 26
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Cancer Genome Sequence Data: Databases & Online Resources

Cancer genomics data sets visualization, analysis Data Release 28 e s
and download.

Cancer projects 86
m Cancer primary sites 22
Donor with molecular data in DCC 22,330

e.g. BRAF, KRAS G12D, DO35100, MU7870, FI998, apoptosis, Cancer Gene Census,
imatinib, GO:0016049 Total Donors 24,289
Simple somatic mutations 81,782,588

Advanced Search

G,
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3. Primer on statistical modeling
Probability

Unsupervised learning, probability rules & Bayes’ theorem
Binomial distribution, Bayesian statistics
Beta-binomial model example

Mixture models, EM inference

References:

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN:
9780262018029

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer. ISBN: 0387310738

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf
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Sequencing Data Analysis Requires Probabilistic Models

Sequencing data contain uncertainty due to
Technical noise from imperfect measurements & errors
Biological features in the signal measurements
How do we predict genomic alterations accounting for these features and noise?

Need approaches to learn the patterns of these features from the data...

Types of machine learning:
— Supervised: output data y, input data x, and training set D = {(x,y)}
- Classification (y are labels), Regression (y is continuous)
— Unsupervised: Only given input data D = {x}, learn the patterns of the data

- E.g. clustering input data x into K clusters by estimating their assignments z

40
'I,f/j‘ FRED HUTCH
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Primer: Probability Theory

Let X be a random variable. The probability for the event X = x for some value x
is p(X = x) or p(x) for short. Let Y be another random variable.

Probability Rules
Sum rule: p(X) = ZYp(X, Y)
Productrule: p(X,Y) = p(Y | X)p(X) and p(Y, X) = p(X | Y)p(Y)

XY
Conditional Probabilities: p(Y | X) = p;(X))

Marginal Probabilities: p(X) = >, p(Y,X) = 3, p(X|Y)p(¥)

X, Y X|Y)\n(Y
Bayes’ Theorem (rule): p(Y | X) = P ) _ pX|Y)p(Y)

pX) 2., pX|Y)p(Y")

£
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Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

A referee has a coin that he uses to decide which team gets first possession. She tossed the coin /N times last
season, once per game. We assume this coin was fair and had a probability 4 = 0.5 for showing a head.
We kept track of the number of heads x that appeared.

What is the probability of seeing a specific number of heads? e.g. x = 25 out of N = 40 tosses

0.2 1

0.1 1

Density

0.0 - ()

' 0 10 20 30 40
#fir FRED HUTCH Number of Heads 31



Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- Areferee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last
season, once per game. We assume this coin was fair and had a probability 4 = 0.5 for showing a head.
We kept track of the number of heads x that appeared.

- What is the probability of seeing a specific number of heads? e.g. x = 25 out of N = 40 tosses
Probability mass function

- Let X be the random variable representing the number of heads. If the probability of heads is y, then X has a
binomial distribution, X ~ Bin(N, i) or p(X = x| N, u) = Bin(x | N, i) where

N
. (N N— < k >
Bin(x|N,u) = (x )ﬂx(l —p) number of ways the 25 heads

is observed among the sequence of
40 tosses.

- Our coin-toss example: for x = 25 out of N = 40 and a fair coin ¢ = 0.5

: 40 25 40-25
p(X =25|N =404 = 0.5) = Bin(25]40,0.5) =  __)0.5°(1 = 0.5)

£P08
v/',/.;t FRED HUTCH 32



Binomial likelihood model

Suppose there are T different referees who toss the same

0.2 -
coin N = {1,..., N;} times and come up with head
>
countsx = {1,..., x}. T
{ T} % 0.1 -
Assuming the referees' tosses are independent and o

identically distributed (iid), what is the probability of 0.0 1 f‘“"‘i‘)—

observing the head counts given the coin (e.g. u = 0.5)?

0 10 20 30 40
Number of Heads

T
pCeyr| Ny i) = | | Bin(| N, ) Likelihood

i=1 # of tosses (N) | # of heads (x)
Referee 1 40 25
What if the coin wasn’t fair and the probability of heads, u, Referee 2 42 35
might not be 0.5? Referee 3 39 27
:f/,‘ FRED HUTCH Referee T XT Nt




Maximum likelihood estimation (MLE)

What is the probability of heads, p, of this coin given the evidence? MLE
0.2 1
We can estimate this model parameter using - )
maximum likelihood estimation B .
5 .
T 0
pCer|Nypp) = | [ Bin(xIN.w)  Likelihood 0.0- CY ),
i=1
d 0 10 20 80 40
log p(xy.7 | Ny ) = Z log Bin(x;| N;; u) Log-likelihood Number of Heads
i=1
1.Log of the likelihood
ZT 2.Take the derivative wrt to u
X
fi= zT_1 z MLE 3.Equate to O
lel N, 4.Solve for u

40
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Bayesian Statistics: Prior distribution for model parameters

Likelihood for Binomial Model

# of tosses (N)

# of heads (x)

Prop. of heads

T
pOpp | Ny, ) = HBin(xl-lNl-,,u) Likelihood

i=1

MLE uses the evidence to estimate parameter /i but our

sample size is small and MLE may overfit

Referee 1 40 25 0.63
Referee 2 42 35 0.83
Referee 3 39 27 0.69
Referee T XT Nt XT/NT

Zero count or sparse data problem: If you have a bad record keeper who only tallies coin tosses from

referees who never tosses a tail, then does that mean the concept of tails on a coin does not exist at all?

Can we capture a more natural expectation of how a coin might behave? Also, what if we have some

knowledge that the coin might be biased?

Prior Distribution for binomial parameter,

The proportion of heads is between 0 and 1 (4 € [0,1]) and can be sampled from a distribution itself

i can be drawn from a Beta distribution, which is in the interval [0,1], with hyper-parameters o and /3

u ~ Beta(a, )

£
,f/,t FRED HUTCH

p(u) = Beta(u | a, p)
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Bayesian statistics: Posterior for Beta-Binomial Model (1)

Binomial likelihood and Beta prior

- T different head counts x = {1,...,x;} for N = {1,..., Ny} sets of tosses and a prior distribution on y

(prob. of heads)

T
pCeyr|N ) = [ | BinGi|N,p)  Likelihood
i=1
p(u) = Beta(u|a, p) Prior
- To estimate parameter 1 in a Bayesian framework

- We need the posterior, p(4i | x), but only have p(x | 1) and p(u)

» Recall Bayes’ Theorem:
Y pX| Y)p(Y)

Y p(X|Y)p(Y)

pY|X) =
Posterior

x p(X|Y) p(Y)
Likelihood Prior

* The posterior is our belief state by combining evidence from observations and our prior beliefs.

£P08
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Bayesian statistics: Posterior for Beta-Binomial Model (2)

Beta-Binomial Model: Posterior distribution

- To estimate the model parameter u in a Bayesian framework, we compute the posterior, p(ii|x)

T
p(u|x) o< | | Bin(x [N, ) X Beta(u| a. p)

- Beta is a conjugate prior for the binomial; the product of binomial and Beta has the form of a Beta

T T
p(u|x) « HBin(xl-lNl-,p) X Beta(u|a,p) = HBeta(,u |x; + o, N;—x; + )

‘Likelihood Prior i Posterior
Figure 3.6 in Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press
T —— prior Ba(2.0, 2.0) T ikel N, [——pnorBe(5.0, 2.0)
Likelihood only =--kBe0. 180 ..tg‘:&?&?’?’ﬁnly,;’ \ |--keli20, i40)
Posteriorw/ 5 iy — =S st uniform prior AN — —
uniform prior AN Bin X Bera(l':lb' ; \'\ Fosterior w/
T ) | BTN i ar Uty i
Bin X Beta(1,1) i .\ Posterior w/ LY R strong prior
L il i\ weak prior I il [ Bin X Beta(5,2)
il %\ BinxBeta(2.2) ot '
| & 1\ B
T " Al Prior Only ’
i Prior Only
il - Beta(5,2)
',',./0." FRED HUTCH cO 0L| o2 0‘1 0‘4 0.5 O‘C G‘I bb; 0.9 1 37




Bayesian statistics: MAP estimate

Beta-Binomial Model: Posterior distribution , ,
T T 04 :B

p(u|x) o [ | Bin(x|N; p) x Beta(u|a. p) = | | Beta(u|x; + a. N; = x; + )

i i Posterior

- Then, what is the probability of heads, y, of this coin given the evidence and the prior?

Maximum a posteriori (MAP) estimate

- From the posterior, we can estimate the parameter using the maximum a posteriori (MAP), [, p

I, : —1
- MAP refers to the mode of the posterior distribution and the mode of a Beta is aiﬂ_ 5
: : e : '—1
- Since the posterior has the form of a Beta distribution, then the MAP is m
T
a'=2. x+a
T
p = Zi (Nl — xl-) + 1. Log of the p(?ste.rior
Section 3.3 in Murphy (2012). 2. Take the derivative wrt to u
Machine Learning: A Probabilistic ZT v 4+a—1 3. Equateto 0
Perspective. MIT Press ~ . i 4. Solve for y
Hmap = ~7 MAP
6‘,79 FRED HUTCH Zi Ni+a+p-2 38



Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

Mutation Calling from Sequencing Data

Data
Referees 1,..., T
For each Referee i
- Coin Tosses: V;
- Count of heads: x;
- Count of tails: NV; — x;

Data
IGenomic loci 1,..., T
For each locus 1
- Depth (total reads): NV,
- Count of reference reads: x;
- Count of variant reads: N, — x;

£P08
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Mixture Models: Online Tutorial and Resource

fiveMinuteStats (https://stephens999.qithub.io/fiveMinuteStats/)

by Dr. Matthew Stephens, Professor in Statistics & Human Genetics at University of Chicago

1. Introduction to mixture models with probabilistic derivations and R code
«  Examples with Bernoulli and Gaussian models

«  https://stephens999.qithub.io/fiveMinuteStats/intro_to_mixture_models.html

2. Introduction to EM with Gaussian Mixture Model example and R code

«  https://stephens999.qgithub.io/fiveMinuteStats/intro_to_em.html

L0,
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Homework #5: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.
Learn the parameters and infer the genotypes
Annotate the mutation status for a set of genomic loci.
Expected outputs for each question will be provided so that you can check your code.
RStudio Markdown and Python Jupyter Notebook templates provided.
Due: May 8th

Office Hours with Anna-Lisa Doebley (adoebley@uw.edu)

Monday, May 4, 2-3pm
Wednesday, May 6, 2-3pm
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