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A B S T R A C T

Purpose
Cell-free DNA (cfDNA) offers the potential for minimally invasive genome-wide profiling of tumor
alterations without tumor biopsy and may be associated with patient prognosis. Triple-negative
breast cancer (TNBC) is characterized by few mutations but extensive somatic copy number al-
terations (SCNAs), yet little is known regarding SCNAs in metastatic TNBC. We sought to evaluate
SCNAs in metastatic TNBC exclusively via cfDNA and determine if cfDNA tumor fraction is as-
sociated with overall survival in metastatic TNBC.

Patients and Methods
In this retrospective cohort study, we identified 164 patients with biopsy-proven metastatic
TNBC at a single tertiary care institution who received prior chemotherapy in the (neo)adjuvant
or metastatic setting. We performed low-coverage genome-wide sequencing of cfDNA from
plasma.

Results
Without prior knowledge of tumor mutations, we determined tumor fraction of cfDNA for 96.3% of
patients and SCNAs for 63.9% of patients. Copy number profiles and percent genome altered were
remarkably similar between metastatic and primary TNBCs. Certain SCNAs were more frequent in
metastatic TNBCs relative to paired primary tumors and primary TNBCs in publicly available data sets
The Cancer Genome Atlas andMETABRIC, including chromosomal gains in drivers NOTCH2, AKT2,
and AKT3. Prespecified cfDNA tumor fraction threshold of$ 10%was associated with significantly
worse metastatic survival (median, 6.4 v 15.9 months) and remained significant independent of
clinicopathologic factors (hazard ratio, 2.14; 95% CI, 1.4 to 3.8; P , .001).

Conclusion
We present the largest genomic characterization of metastatic TNBC to our knowledge, exclusively
from cfDNA. Evaluation of cfDNA tumor fraction was feasible for nearly all patients, and tumor
fraction $ 10% is associated with significantly worse survival in this large metastatic TNBC cohort.
Specific SCNAs are enriched and prognostic in metastatic TNBC, with implications for metastasis,
resistance, and novel therapeutic approaches.

J Clin Oncol 36. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Triple-negative breast cancer (TNBC) makes up
10% to 15% of all breast cancers yet accounts for
more than one third of breast cancer–related deaths.1-5

TNBC is defined by lack of expression of ther-
apeutic targets human epidermal growth factor
receptor 2 (HER2) and estrogen receptor alpha
(ERa), and chemotherapy remains the mainstay

of treatment.4,6,7 Extensive recent efforts have
defined clinicopathologic, genomic, and tran-
scriptomic features of primary TNBC (pTNBC).2,5,8-18

pTNBC is defined by relatively few somatic
single-nucleotide variants and indels (approxi-
mately one mutation per megabase).2,18,19 How-
ever, pTNBC demonstrates frequent loss of TP53
and genomic instability with widespread somatic
copy number alterations (SCNAs), implicating a crit-
ical role of SCNAs in TNBC tumorigenesis.2,9,10
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Although a few studies have begun to interrogate the genomic features of
metastatic TNBC (mTNBC),20-27 there have been no analyses of large
cohorts of patients with mTNBC published to date.

Cell-free DNA (cfDNA) is shed into the circulation by both
normal and malignant cells, and next-generation sequencing
analysis of cfDNA offers minimally invasive genomic profiling of
tumor alterations without tumor biopsy. Prior applications of
cfDNA have focused on tracking specific mutations28-33 or se-
quencing targeted panels of cancer-related genes.22,34-38 Building
on others’work demonstrating the feasibility of genome-wide copy
number analysis from plasma in patients with cancer,21,39,40 we
developed an algorithm, ichorCNA,38 to profile SCNAs and quantify
tumor fraction (TFx) via low-coverage (0.13) whole-genome
sequencing of cfDNA, without the need for prior knowledge of
tumor mutations. Here, we evaluate the association of cfDNA TFx
with survival and use cfDNA as a comprehensive biopsy surrogate
to study the genomics of a disease infrequently biopsied in clinical
practice, identifying key SCNAs that are enriched and prognostic in
mTNBC.

PATIENTS AND METHODS

Patient Identification and Clinicopathologic Data
Consecutive, nonoverlapping patients with metastatic biopsy-proven

TNBC enrolled on ongoing clinical data and biospecimen banking protocols for
metastatic breast cancer (DFCI#09-204, n = 97; and DFCI#05-246, n = 10) or
collected as part of two clinical trials for patients with metastatic TNBC
(DFCI#12-024 [ruxolitinib; ClinicalTrials.gov identifier: NCT01562873], n = 14;
and DFCI#12-431 [cabozantinib; ClinicalTrials.gov identifier: NCT0173843841],
n = 37) were identified for analyses. TNBC was defined as , 5% staining for
estrogen receptor (ER) and progesterone receptor and human epidermal growth
factor receptor 2 (HER2) immunohistochemistry (IHC) 0 to 1+ and/or HER2:
Cep17 fluorescent in situ hybridization ratio, 2.0. Clinicopathologic data were
abstracted from the medical record. Survival events were determined from
medical record or Social Security Death Index. BRCA1 or BRCA2 germline
mutation status was ascertained by medical record review for the receipt of
Clinical Laboratory Improvement Amendments (CLIA)-approved germline
testing. All patients received chemotherapy in the adjuvant, neoadjuvant, or
metastatic setting before first blood draw used in analyses. Use of patients’
clinicopathologic data were institutional review board approved, and all patients
provided written consent.

Sample Processing and DNA Extraction
Venous blood samples were collected in EDTA (BD, Franklin Lakes,

NJ), CellSave Preservative (Cell Search, Raritan, NJ), or Cell-Free DNA
BCT (Streck, Omaha, NE) tubes.42 Blood processing to component parts
within 4 hours of collection, cell-free DNA extraction from plasma, and
DNA quantification were performed as described previously.38 For met-
astatic biopsy samples, . 50% tumor was confirmed via hematoxylin and
eosin staining of fresh frozen samples and then DNA extracted using
Qiagen AllPrep DNA kit (Qiagen, Germantown, MD).

Ultra-Low-Pass Whole-Genome Sequencing
Library construction of cfDNA was performed using the Kapa

HyperPrep kit with custom adapters (IDT, Coralville, IA). Three to 20 ng
of cfDNA input (median, 5 ng), or approximately 1,000 to 7,000 haploid
genome equivalents, was used for ultra-low-pass whole-genome sequencing.
Constructed sequencing libraries were pooled (2 mL of each3 96 per pool)
and sequenced using 100-bp paired-end runs over 13 lane on a HiSeq2500
(Illumina, San Diego, CA) to average genome-wide fold coverage of 0.13.
Segment copy number and TFx were derived via ichorCNA.38 Samples were

excluded if the median absolute deviation of copy ratios (2log2 ratio) between
adjacent bins, genome-wide, was . 0.20, suggesting poor-quality sequence
data.

Identification of TNBC Samples in Publicly Available Data Sets
Patients with triple-negative breast cancer were identified in The Cancer

Genome Atlas (TCGA18; n = 166) and METABRIC1 (n = 277) on the basis of
study-reported negative for the ER and progesterone receptor via IHCandHER2-
receptor copy number diploid (GISTIC2.0 value of 0) or IHC 0 to 1. If ER status
was not available, ER status was inferred from RNA expression data.43

Gene-Level Copy Number Analyses
GISTIC2.044,45 output was used for all gene-level copy number

analyses. Segmented data files derived from ichorCNA for mTNBC cfDNA
and publicly available segmented data for METABRIC1 were purity and
ploidy corrected, then input into GISTIC2.044,45 with amplification/
deletion threshold log2ratio . 0.3, confidence level 0.99, and Q-value
threshold 0.05. Genes were defined as gain (GISTIC value 1; corresponds to
three copies) or amplification (GISTIC value 2; corresponds to four or
more copies) versus diploid (GISTIC value 0). TCGA GISTIC2.0 copy
number data were obtained from cBioPortal.46,47

Statistical Analyses and Data Visualization
All statistical analyses and data visualizations were performed in R

version 3.3.1. Contrasts in patient and tumor characteristics were evaluated
using Pearson’s x2 tests. The association of TFx to continuous and categorical
clinicopathologic factors was evaluated using Wilcoxon rank-sum and x2 test
or analysis of variance, respectively. Correlation of cfDNA yield and TFx from
independently processed same-day blood draw samples was calculated using
interclass correlation coefficient. Performance of cfDNA relative to paired
metastatic biopsy—including sensitivity and specificity with biopsy consid-
ered truth—was computed across 1-Mb bins. Correlation among bin-level
copy number calls for all samples was calculated using Spearman correlation
coefficient, and hierarchical clustering was performed using average linkage.

Comparison of Primary Versus Metastatic TNBC
For principal component analysis (PCA), gene-level cfDNA GISTIC

copy number calls were projected onto the METABRIC TNBC PCA co-
ordinate basis and visualized using ggbiplot.48 Comparison in frequency
of gain/amplification (v no gain) and loss/deletion (v no loss) between
metastatic and primary samples was calculated using Fisher’s exact test.
All frequency calculations of copy number calls across the genome were
multiple-testing corrected using Benjamini–Hochberg procedure for false
discovery rate. Volcano plots were generated using ggplot2 package,49

CoMut plots were visualized with GenVisR package,50 and genome-wide
significance plot using qqman package.51

Survival Analyses
All Kaplan-Meier plots were generated using packHV package.52 For

baseline clinicopathologic characteristics, survival was defined as time
from metastatic diagnosis and significance evaluated by log-rank test. For
cfDNA variables, including line of metastatic therapy at blood draw, first
blood draw, and highest TFx blood draw, survival was defined as time
from blood draw. Univariate and multivariable Cox proportional hazards
models were calculated using the survival package.

RESULTS

mTNBC Cohort
We identified 506 plasma samples from 164 patients with

biopsy-proven mTNBC collected between August 2010 and
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Fig 1. Genome-wide copy number profiles in cell-free DNA (cfDNA) are highly concordant with metastatic biopsy specimens. (A) REporting recommendations for tumor
MARKer prognostic studies (REMARK) diagram. (B) Copy number plots of four representative pairs of metastatic biopsy (left panels) and cfDNA (right panels) with copy
number (log2 ratio) indicated on the y-axis and chromosome on the x-axis. Sensitivity and specificity of tumor biopsy somatic copy number alterations detected in cfDNA
(n = 10 pairs) are indicated for overall, gain, or loss. Examples of private somatic copy number alterations present in cfDNAbut notmetastatic biopsy (top panels, white arrow)
and conversely metastatic biopsy but not cfDNA (top panels, gray arrow) are indicated. TFx, tumor fraction; TNBC, triple-negative breast cancer.
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November 2016 under institutional review board–approved pro-
tocols at a single institution and abstracted detailed clinico-
pathologic information (Fig 1A; Table 1). All patients received
chemotherapy before blood collection, with most patients having
received neoadjuvant or adjuvant anthracycline and taxane-based
chemotherapy. The median time to follow-up from metastatic
diagnosis was 17 months (range, 0 to 82 months). Overall, this
cohort reflects similar trends to other analyses of mTNBC, in-
cluding worse prognosis for patients initially diagnosed with stage
III relative to lower stage (I or II) disease and improved prognosis
for patients with germline BRCA1 or BRCA2mutations (Appendix
Fig A1, online only).

Copy Number Is Highly Concordant With Metastatic
Biopsy Secimens and Reflects Distinct Subsets of
mTNBCs

Low-coverage whole-genome sequencing provided evaluable
sequencing data for 478 (94.5%) samples that subsequently underwent

copy number analysis and TFx determination via ichorCNA.38 TFx
could be determined for 158 of 164 patients (96.3%); 337 of 478
evaluable samples (70.5%) had detectable tumor DNA above the
lower limit of detection (TFx $ 3%). One hundred one of 158
evaluable patients (63.9%) had at least one sample with TFx $
10%, the prespecified proportion of tumor DNA adequate for
high-confidence copy number calls on the basis of extensive prior
benchmarking.38 Patients with maximum TFx $ 10% had similar
clinicopathologic characteristics relative to patients with maximum
TFx , 10% (Table 1).

We and others have demonstrated robust concordance of copy
number and mutation between metastatic biopsy specimens and
paired cfDNA.38,53 As confirmation in this data set, we performed
low-coverage sequencing of metastatic biopsy samples obtained at
disease progression with concurrent plasma (range, 0 to 7 days
from biopsy; n = 10 pairs). We compared copy number of 1-megabase
segments across the genome using ichorCNA. Altered segments in the
tumor biopsy specimen were detected in cfDNA with high sen-
sitivity (0.86) and specificity (0.90), and, as anticipated, overlap
was not identical,22,54 with instances of private SCNAs present in
cfDNA (Fig 1B).

TNBC is a heterogeneous disease comprising distinct
subtypes.8,55 To investigate patterns of chromosomal alter-
ations, we compared genome-wide copy number profiles for all
cfDNA samples with TFx $ 10%. Hierarchical clustering
revealed two main copy number clusters, with cluster1 sig-
nificantly enriched for patients with mTNBC whose primary
receptor status was non-TNBC (x2 P = .007; Appendix Figs
A2A-A2C, online only). We observed that the gene-level copy
number profile of cluster2 tumors closely mirrors basal-like
IntClust10 pTNBCs in METABRIC1 (Appendix Figs A2D-
A2E). Principal component analysis of METABRIC gene-
level copy number data revealed high concordance of cfDNA
cluster2 with basal-like METABRIC IntClust10 and cfDNA
cluster1 with non-IntClust10 (nonbasal) pTNBCs (Appendix
Fig A2F), although formal IntClust designation requires con-
current gene expression analysis.1

Copy Number Gains in Drivers NOTCH2, AKT2, and
AKT3 Are Enriched in mTNBCs Relative to pTNBCs

We hypothesized that chemoresistant mTNBCs would be
enriched for specific SCNAs relative to chemotherapy-naı̈ve
pTNBCs, including alterations potentially involved in drug
resistance and/or metastasis. We determined gene-level SCNA
status via GISTIC2.044,45 for the highest TFx ($ 10%) cfDNA
sample per patient with mTNBC (n = 101; Appendix Figs A3A
and A3B, online only). We then identified 20 patients with
mTNBC with at least one cfDNA sample with TFx $ 10%
whose primary tumor underwent targeted panel sequencing56

as part of clinical management. The median time between pri-
mary sample and metastatic cfDNAwas 26 months (interquartile
range, 11 to 38 months) with 18 of 20 primary tumors resected.
We compared frequency of gain or loss for 25 cancer-related
genes commonly altered in breast cancer between primary
tumor panel sequencing and metastatic low-coverage cfDNA
sequencing. Four genes demonstrated greater frequency of
gain in mTNBC versus pTNBC samples (NOTCH2 on 1p,

Table 1. Cohort Clinicopathologic Characteristics

Characteristic

All
Patients
(n = 164)

Tumor
Fraction
$ 10%
(n = 101)

Tumor
Fraction
, 10%
(n = 63) P

Age at primary diagnosis, by decade .30
, 40 years 34 (21) 26 (26) 8 (13)
40-50 years 62 (38) 36 (36) 26 (41)
50-60 years 45 (27) 27 (27) 18 (29)
. 60 years 20 (12) 10 (10) 10 (16)
Unknown 3 (2) 2 (2) 1 (2)

Race .49
White 147 (90) 93 (92) 54 (86)
Nonwhite 13 (8) 6 (6) 7 (24)
Unknown 4 (2) 2 (2) 2 (3)

BRCA1/2 germline mutation status .20
Mutant 24 (15) 17 (17) 7 (11)
Wild type 112 (68) 69 (68) 43 (68)
Unknown 28 (17) 15 (15) 13 (21)

Primary receptor status .24
HER2-positive 6 (4) 3 (3) 3 (5)
HR-positive, HER2-negative 23 (14) 13 (13) 10 (16)
Indeterminate 9 (5) 6 (6) 3 (5)
HR-negative, HER2-negative 126 (77) 79 (78) 47 (75)

Metastatic receptor status 1.0
HR-negative, HER2-negative 164 (100) 101 (100) 63 (100)

AJCC stage at primary diagnosis .80
I 22 (13) 14 (14) 8 (13)
II 80 (49) 50 (50) 30 (48)
III 43 (26) 25 (25) 18 (29)
IV 16 (10) 11 (11) 5 (8)
Unknown 3 (2) 1 (1) 2 (3)

Adjuvant chemotherapy .34
Anthracycline based 9 (5) 4 (4) 5 (8)
Taxane based/other 11 (7) 9 (9) 2 (3)
Anthracycline plus taxane based 119 (73) 74 (73) 45 (71)
Metastatic at diagnosis/unknown 25 (15) 14 (14) 11 (18)

Lines of metastatic therapy, median
(range), No.

4 (1-11) 4 (1-11) 4 (1-9) .76

Vital status .04
Alive 51 (31) 25 (25) 26 (41)
Deceased 113 (69) 76 (75) 37 (59)

NOTE. Data presented as No. (%) unless otherwise noted.
Abbreviations: AJCC, American Joint Committee on Cancer Staging; HER2,
human epidermal growth factor receptor 2; HR, hormone receptor.
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Fig 2. Metastatic triple-negative breast cancers (TNBCs) demonstrate enrichment of driver and targetable copy number alterations. (A) Gene-level copy number al-
terations in primary TNBCs from METABRIC and The Cancer Genome Atlas (TCGA), and (B) from metastatic TNBCs from cell-free DNA (cfDNA). The frequency of gene-
level copy number gains (red) or losses (blue) across the genome (top panel) and per-sample copy number alteration for 25 breast cancer–related genes (bottom panel). (C)
Percentage of samples with gain (top panel) or loss (bottom panel) for 25 breast cancer–related genes in primary (gold) versus chemoresistant metastatic TNBCs (blue).
Genes with significant alteration in metastatic TNBC (Fisher’s exact false discovery rate adjusted [FDR] P , .05) indicated by asterisk. (D) Percent of genes altered in
primary TNBCs versus chemoresistant metastatic TNBCs. ULP-WGS, ultra-low-pass whole-genome sequencing.
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AKT3 on 1q, GATA3 on 10p, AKT2 on 19q; Fisher’s exact P, .05),
whereas four genes demonstrated single copy loss more frequently
in pTNBC than mTNBC (CDKN2A on 9p, PTEN on 10q, RB1 on
13q, NF1 on 17q; Fisher’s exact P , .05; Appendix Figs A3C and
A3D).

To evaluate SCNA differences in a large number of primary
versus metastatic TNBCs, we identified pTNBCs in publicly available
data sets METABRIC1 and TCGA18 (total, n = 433) and determined
gene-level copy number status in both data sets via GISTIC2.0 to
facilitate uniform comparison. Overall, altered regions were re-
markably concordant between pTNBC and mTNBC (Figs 2A and
2B); however, mTNBCs demonstrated greater SCNA frequency of
both commonly altered regions (1q, 7q, 8q) and less commonly
altered regions (11q, 18q, 19p; Appendix Fig A3E). A subset of genes
was alteredmore frequently inmTNBC relative to pTNBC, including
high-frequency (. 50% of samples) gains inMYC (8q), AKT3 (1q),
GATA3 (10p), NOTCH2 (1p), EZH2 (7q), BRAF (7q), andMET (7q;

Fisher’s exact, genome-wide false discovery rate (FDR) correction
P, .05; Figs 2A-2C; Data Supplement). Four genes were enriched in
mTNBC relative to pTNBC both in paired samples and across co-
horts: gains in GATA3 and drivers NOTCH2, AKT2, and AKT3.
Interestingly, the genome-wide percentage of genes altered was not
significantly increased in mTNBC relative to pTNBC, although there
was greater heterogeneity among primary tumors (Fig 2D).

Chromosomal Gains of 18q11 and 19p13 Are
Associated With Poor Survival in mTNBC

Little is known regarding genomic determinants of TNBC
metastatic survival. Focusing on mTNBC-enriched SCNAs (Fig
3A), we calculated the Cox proportional hazard ratio of each gene
for metastatic survival (Fig 3B; Data Supplement). Only a subset
of mTNBC-enriched loci were prognostic in the metastatic setting.
Unexpectedly, the loci most strongly associated with poor metastatic
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survival, 18q11 and 19p13, have never previously associated with
TNBC survival. More than half of mTNBCs harbored gain/
amplification of 18q11, 19p13, or both, significantly more
frequent than in pTNBCs (x2 P, .001; Appendix Fig A4A, online
only). Gain/amplification of both 18q11 and 19p13 was strongly
associated with worse survival in univariate analyses and multi-
variable Cox proportional hazard models including clinicopath-
ologic factors and TFx (hazard ratio, 3.30; 95% CI, 1.30 to 8.38;
P = .012) and was also associated with poor prognosis in pTNBCs
(log-rank P = .038; Fig A4B-A4E).

Tumor Fraction of cfDNA Is an Independent Prognostic
Biomarker in mTNBC

Our approach offers a tumor fraction calculation on the basis
of SCNAs detected in cfDNAwithout a priori knowledge of tumor
mutation status.38 To evaluate reproducibility, two plasma samples
were drawn in a single venipuncture and fractionated in in-
dependent laboratories for 11 patients. Data showed high TFx
concordance of paired samples (intraclass correlation coefficient =
0.984) and nearly identical copy number profiles despite variable
cfDNA yield (Appendix Fig A5A-A5D, online only).
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ded then recurred on clinical trial of cabo-
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(C) Kaplan-Meier curve of overall metastatic
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with metastatic triple-negative breast cancer
stratified by TFx of first blood draw. (D)
Multivariable Cox proportional hazards model
of overall metastatic survival from first blood
draw. HR, hormone receptor; HER2, human
epidermal growth factor receptor 2.
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Tumor fraction measurement using ichorCNA has a broad
dynamic range, both within individuals and among distinct pa-
tients. Within-patient TFx variability is illustrated by a single
patient on a clinical trial of cabozantinib,41 who demonstrated a
TFx nadir of 3.5% while responding to therapy with a maximum
TFx of 48.2% at progression (Fig 4A). Evaluating a first sentinel
blood draw, this cohort demonstrated a diverse range of TFx

from, 3% to 77.2% (Fig 4B). We hypothesized that metastases to
more highly vascular organs could be associated with higher TFx,
and indeed the presence of liver metastasis was associated with
significantly higher TFx in both the sentinel draw and maximum
TFx draw (Appendix Fig A6A-A6B, online only), remaining sig-
nificant when adjusting for characteristics in a multivariate model
(Appendix Fig A6A-A6B).
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Allele fraction of tumor mutations detected in cfDNA is
suggested to be a prognostic for metastatic breast cancer.28 We
evaluated prognostic association of TFx at a prespecified thresh-
old $ 10% on the basis of . 2,400 tumor/normal in silico ad-
mixtures of varying sequencing coverage and tumor fractions that
demonstrated optimal SCNA prediction performance at a tumor
fraction $ 10%.38 In this cohort, TFx $ 10% on a patient’s first
blood draw was associated with significantly shorter survival,
median 6.4 months versus 15.9 months (log-rank P , .001; Fig
4C). TFx remained an independent prognostic factor in a multi-
variate Cox proportional hazards model (hazard ratio, 2.14; 95%
CI, 1.40 to 3.28; P , .001; Fig 4D) and also in sensitivity analyses
including only patients whose primary tumor was TNBC (n = 121)
and with TFx as a continuous variable (Appendix Fig A6C-A6E).

DISCUSSION

We present the largest genomic characterization of mTNBC to our
knowledge. Using a cfDNA-exclusive approach relevant for most
patients with mTNBC, we demonstrate that TFx is a robust,
minimally invasive independent prognostic biomarker in mTNBC.
pTNBC and mTNBC exhibit remarkably similar copy number
profiles, yet we identified known cancer drivers among SCNAs
enriched in mTNBC relative to pTNBC.

Allele fraction of known mutations detected in cfDNA is
suggested to be prognostic but is dependent on knowledge of
existing tumor mutations and has not been evaluated in a large

cohort of mTNBCs.28 Our approach evaluates TFx without a priori
tumor mutation status and is evaluable in the vast majority of patients
with mTNBC. We demonstrate that TFx is a genomic biomarker for
mTNBC independent of standard clincopathologic characteristics in
a large modern cohort. Patients with higher tumor fraction (TFx $
10%) had significantly inferior survival but showed no significant
differences in baseline characteristics relative to patients with lower TFx.
Patients with higher TFx were more likely to have documented liver
metastases, potentially associated with highly vascular organs or distinct
features of TNBC that metastasizes to the liver. In support of further
testing of this approach in clinical practice, we will be launching
a prospective cohort study to further investigatemTNBCTFx dynamics
while on therapy and subsequent association with response to standard
or experimental therapies. Future efforts may allow minimally invasive
analysis of clinically relevantmutational signatures, such as homologous
recombination deficiency or microsatellite instability.

Several cancer types have been shown to evolve with pro-
gressive collection of mutations over time and on therapy.2,34,53 It
has been hypothesized that primary tumors with genomic in-
stability such as TNBC will collect immense numbers of genomic
alterations in the metastatic setting after chemotherapy. Surpris-
ingly, we demonstrate no significant difference in percent ge-
nome altered and remarkably similar patterns of chromosomal
alterations when comparing more than 100 mTNBCs with more
than 400 pTNBCs. This suggests that large-scale chromosomal
events are rare in metastatic development and supports prior work
demonstrating that most SCNAs occur early in tumorigenesis in
TNBCs.57,58

Multivariable Cox Proportional Hazards Model
D

Lower Upper

Tumor fraction > 10% 2.14 1.40 3.28 < .001

BRCA status

BRCA status unknown ref ref ref ref

BRCA wild-type 1.23 0.63 2.43 .546

BRCA mutant 0.75 0.29 1.97 .561

Primary receptor status

Indeterminate ref ref ref ref

HR positive/HER2 negative 0.51 0.15 1.71 .275

HER2 0.90 0.20 4.12 .896

TNBC 1.08 0.38 3.03 .888

Primary stage at diagnosis

Stage I ref ref ref ref

Stage II 0.74 0.39 1.41 .357

Stage III 1.36 0.70 2.66 .362

Stage IV 0.56 0.22 1.46 .236

Age at primary diagnosis (per decade > 40 years) 0.77 0.58 1.01 .058

Year sample collected 0.86 0.60 1.22 .400

Sample collection cohort 1.06 0.94 1.19 .342

Line of metastatic therapy at blood draw 1.12 0.97 1.28 .122

Number of samples per patient 1.00 1.00 1.01 .379

95% CI
Variables Hazard Ratio P

Fig 4. (Continued).
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Despite few large-scale SCNA changes between primary and
metastatic tumors, we identify certain loci enriched in mTNBCs
relative to paired primary and/or large cohorts of pTNBCs. We
identify a novel association of 18q11 and 19p13 gains with met-
astatic survival that is independent of both clinicopathologic
factors as well as TFx. Gain or amplification of both regions
identifies a subset of TNBC rapid progressors with remarkably
poor survival in the metastatic and also the primary setting. Both
18q1159 and 19p1360,61 include known breast cancer risk loci.59,60

19p13 is associated with increased breast cancer risk, specifically
among BRCA1mutation carriers,60 and associated specifically with
ER-negative61 and TNBC60 in the general population. An assess-
ment of focal events, recently shown to be a driving force in
prostate cancer,54 might lead to identification of additional prog-
nostic SCNAs.

Our study involved a modern cohort representing current
standard treatment approaches, with 86% of patients without
distant metastasis at diagnosis having received anthracycline
and taxane-based (neo)adjuvant chemotherapy. Over the first
20 months from metastatic diagnosis, patients initially diagnosed
with stage III disease are more likely to die as a result of their
disease relative to patients diagnosed with stage I or II or de novo
metastatic disease, supporting prior epidemiologic studies.5 Pa-
tients with germline BRCA1/2 mutations have improved prognosis.
The patients in our cohort were relatively young, with more than
half of the patients’ primary diagnoses before age 50 years, pri-
marily wild-type for germline BRCA1/2 (15% with documented
mutation), and most patients were white, an important limitation
of this study.

In summary, we illustrate a framework for minimally invasive
genomic characterization of metastatic cancer and subsequent
integration with clinicopathologic data and patient outcomes. This
analysis provides the most comprehensive genomic profile of

metastatic TNBC SCNAs to date, to our knowledge, and suggests
that determining cfDNA TFx via a blood test provides important
prognostic information beyond standard clinicopathologic factors.
This approach has the potential to reveal clinically useful bio-
markers while identifying unique genomic features of metastatic
cancer and may advance our understanding of metastasis, drug
resistance, and novel therapeutic targets.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS
OF INTEREST

Disclosures provided by the authors are available with this article at
jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Daniel G. Stover, Heather A. Parsons, Gavin Ha,
Atish D. Choudhury, Ann H. Partridge, Ian E. Krop, Todd R. Golub, J.
Christopher Love, Eric P. Winer, Sara M. Tolaney, Nancy U. Lin, Viktor A.
Adalsteinsson
Provision of study materials or patients: Nancy U. Lin
Collection and assembly of data: Daniel G. Stover, Heather A. Parsons,
Gavin Ha, Samuel S. Freeman, Gregory Gydush, Sarah C. Reed, Denisse
Rotem, Melissa E. Hughes, Deborah A. Dillon, Nikhil Wagle, Ian E. Krop,
Sara M. Tolaney, Nancy U. Lin, Viktor A. Adalsteinsson
Data analysis and interpretation: Daniel G. Stover, Heather A. Parsons,
Gavin Ha, Samuel S. Freeman, William T. Barry, Hao Guo, Atish D.
Choudhury, Sarah C. Reed, Justin Rhoades, Nikhil Wagle, Gad Getz,
Todd R. Golub, J. Christopher Love, Eric P. Winer, Sara M. Tolaney,
Nancy U. Lin, Viktor A. Adalsteinsson
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

REFERENCES

1. Curtis C, Shah SP, Chin SF, et al: The genomic
and transcriptomic architecture of 2,000 breast tumours
reveals novel subgroups. Nature 486:346-352, 2012

2. Shah SP, Roth A, Goya R, et al: The clonal
and mutational evolution spectrum of primary
triple-negative breast cancers. Nature 486:395-399,
2012

3. Turner NC, Reis-Filho JS: Tackling the diversity
of triple-negative breast cancer. Clin Cancer Res 19:
6380-6388, 2013

4. Bianchini G, Balko JM, Mayer IA, et al: Triple-
negative breast cancer: Challenges and opportunities
of a heterogeneous disease. Nat Rev Clin Oncol 13:
674-690, 2016

5. Bauer KR, BrownM,CressRD, et al: Descriptive
analysis of estrogen receptor (ER)-negative, proges-
terone receptor (PR)-negative, and HER2-negative in-
vasive breast cancer, the so-called triple-negative
phenotype: A population-based study from the Cal-
ifornia Cancer Registry. Cancer 109:1721-1728, 2007

6. Carey L, Winer E, Viale G, et al: Triple-negative
breast cancer: Disease entity or title of convenience?
Nat Rev Clin Oncol 7:683-692, 2010

7. Hudis CA, Gianni L: Triple-negative breast
cancer: An unmet medical need. Oncologist 16:1-11,
2011 (suppl 1)

8. Lehmann BD, Bauer JA, Chen X, et al: Identi-
fication of human triple-negative breast cancer sub-
types and preclinical models for selection of targeted
therapies. J Clin Invest 121:2750-2767, 2011

9. Balko JM, Giltnane JM, Wang K, et al: Mo-
lecular profiling of the residual disease of triple-
negative breast cancers after neoadjuvant chemo-
therapy identifies actionable therapeutic targets.
Cancer Discov 4:232-245, 2014

10. Ha G, Roth A, Lai D, et al: Integrative analysis
of genome-wide loss of heterozygosity and mono-
allelic expression at nucleotide resolution reveals
disrupted pathways in triple-negative breast cancer.
Genome Res 22:1995-2007, 2012

11. Birkbak NJ, Wang ZC, Kim JY, et al: Telomeric
allelic imbalance indicates defective DNA repair and
sensitivity to DNA-damaging agents. Cancer Discov
2:366-375, 2012

12. Prat A, Lluch A, Albanell J, et al: Predicting re-
sponse and survival in chemotherapy-treated triple-
negative breast cancer. Br J Cancer 111:1532-1541, 2014

13. Brewster AM, Chavez-MacGregor M, Brown P:
Epidemiology, biology, and treatment of triple-negative
breast cancer in women of African ancestry. Lancet
Oncol 15:e625-e634, 2014

14. Burstein MD, Tsimelzon A, Poage GM, et al:
Comprehensive genomic analysis identifies novel
subtypes and targets of triple-negative breast cancer.
Clin Cancer Res 21:1688-1698, 2015

15. Lehmann BD, Jovanović B, Chen X, et al:
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20. André F, Bachelot T, Commo F, et al: Com-
parative genomic hybridisation array and DNA se-
quencing to direct treatment of metastatic breast
cancer: A multicentre, prospective trial (SAFIR01/
UNICANCER). Lancet Oncol 15:267-274, 2014

21. Heidary M, Auer M, Ulz P, et al: The dynamic
range of circulating tumor DNA in metastatic breast
cancer. Breast Cancer Res 16:421, 2014

22. Chae YK, Davis AA, Jain S, et al: Concordance
of genomic alterations by next-generation sequencing
(NGS) in tumor tissue versus circulating tumor DNA in
breast cancer. Mol Cancer Ther 16:1412-1420, 2017

10 © 2018 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Stover et al

Downloaded from ascopubs.org by Ohio State University on January 3, 2018 from 140.254.087.149
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.

http://jco.org


23. Craig DW, O’Shaughnessy JA, Kiefer JA, et al:
Genome and transcriptome sequencing in prospective
metastatic triple-negative breast cancer uncovers
therapeutic vulnerabilities. Mol Cancer Ther 12:104-116,
2013

24. Isakoff SJ,Mayer EL, He L, et al: TBCRC009: A
multicenter phase II clinical trial of platinum mono-
therapy with biomarker assessment in metastatic
triple-negative breast cancer. J ClinOncol 33:1902-1909,
2015

25. Magbanua MJ, Carey LA, DeLuca A, et al: Cir-
culating tumor cell analysis inmetastatic triple-negative
breast cancers. Clin Cancer Res 21:1098-1105, 2015

26. Parsons HA, Beaver JA, Cimino-Mathews A,
et al: Individualized Molecular Analyses Guide Efforts
(IMAGE): A prospective study of molecular profiling
of tissue and blood in metastatic triple-negative
breast cancer. Clin Cancer Res 23:379-386, 2017

27. Lefebvre C, Bachelot T, Filleron T, et al: Mu-
tational profile of metastatic breast cancers: A ret-
rospective analysis. PLoS Med 13:e1002201, 2016

28. Dawson SJ, Tsui DW, Murtaza M, et al: Anal-
ysis of circulating tumor DNA to monitor metastatic
breast cancer. N Engl J Med 368:1199-1209, 2013

29. Garcia-Murillas I, Schiavon G, Weigelt B, et al:
Mutation tracking in circulating tumor DNA predicts
relapse in early breast cancer. Sci Transl Med 7:
302ra133, 2015

30. Silva JM, Silva J, Sanchez A, et al: Tumor DNA
in plasma at diagnosis of breast cancer patients is
a valuable predictor of disease-free survival. Clin
Cancer Res 8:3761-3766, 2002

31. Higgins MJ, Jelovac D, Barnathan E, et al:
Detection of tumor PIK3CA status in metastatic breast
cancer using peripheral blood. Clin Cancer Res 18:
3462-3469, 2012

32. Schiavon G, Hrebien S, Garcia-Murillas I, et al:
Analysis of ESR1 mutation in circulating tumor DNA
demonstrates evolution during therapy for metastatic
breast cancer. Sci Transl Med 7:313ra182, 2015

33. Fribbens C, O’Leary B, Kilburn L, et al: Plasma
ESR1 mutations and the treatment of estrogen
receptor-positive advanced breast cancer. J Clin Oncol
34:2961-2968, 2016
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Fig A1. Metastatic triple-negative breast cancer cohort survival by baseline clinicopathologic characteristics. (A-C) Kaplan-Meier curves of survival from metastatic
diagnosis stratified by stage at diagnosis (A), age at primary diagnosis by decade over 40 (B), and germline BRCA1/2 mutation status (C). (D) Kaplan-Meier curve of survival
from first blood draw stratified by line of therapy in the metastatic setting. P-value indicates log-rank test.
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Fig A2. Genome-wide copy number profiles across patients reveal high within-patient correlation and two distinct patterns of copy number alterations. (A) Unsupervised
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Fig A3. (Continued).
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Fig A5. Tumor fraction and copy number profiles are reproducible from independent blood draws. (A) Schematic of independently processed same-day blood draws. Two
separate blood tubes from a single venipuncture had plasma separated and were frozen in independent laboratories. Equivalent volumes of plasma then underwent DNA
extraction, library construction, low-coverage sequencing, and TFx calculation via ichorCNA. (B) Total cell-free DNA yield (ng per mL plasma; left panel) and TFx (right panel)
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Fig A5. (Continued).
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Fig A6. Tumor fraction is associated with liver metastasis and metastatic survival in patients with primary TNBC. (A) Multiple linear regression of TFx with covariates. (B)
TFx by presence or absence of liver metastasis in first blood sample collected per patient (left) or maximum TFx per patient (right). Boxplots indicate 25th-75th percentiles
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versus below 10% for only those patients with primary TNBC. (D)Multivariable Cox proportional hazardsmodel of TFx above versus below 10% for only those patients with
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Fig A6. (Continued).
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