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Loss of heterozygosity (LOH) and copy number alteration (CNA) feature prominently in the somatic genomic landscape
of tumors. As such, karyotypic aberrations in cancer genomes have been studied extensively to discover novel oncogenes
and tumor-suppressor genes. Advances in sequencing technology have enabled the cost-effective detection of tumor
genome and transcriptome mutation events at single-base-pair resolution; however, computational methods for pre-
dicting segmental regions of LOH in this context are not yet fully explored. Consequently, whole transcriptome, nu-
cleotide-level resolution analysis of monoallelic expression patterns associated with LOH has not yet been undertaken in
cancer. We developed a novel approach for inference of LOH from paired tumor/normal sequence data and applied it to
a cohort of 23 triple-negative breast cancer (TNBC) genomes. Following extensive benchmarking experiments, we describe
the nucleotide-resolution landscape of LOH in TNBC and assess the consequent effect of LOH on the transcriptomes of
these tumors using RNA-seq-derived measurements of allele-specific expression. We show that the majority of monoallelic
expression in the transcriptomes of triple-negative breast cancer can be explained by genomic regions of LOH and
establish an upper bound for monoallelic expression that may be explained by other tumor-specific modifications such as
epigenetics or mutations. Monoallelically expressed genes associated with LOH reveal that cell cycle, homologous re-
combination and actin-cytoskeletal functions are putatively disrupted by LOH in TNBC. Finally, we show how inference
of LOH can be used to interpret allele frequencies of somatic mutations and postulate on temporal ordering of mutations
in the evolutionary history of these tumors.

[Supplemental material is available for this article.]

Segmental regions of loss of heterozygosity (LOH) are a common

feature of tumor genomes. LOH can be measured by examination

of heterozygous alleles in normal cells that have been rendered

homozygous due to segmental aneuploidies or other mechanisms

such as gene conversion, mitotic recombination, and mitotic non-

disjunction. In numerous malignancies, tumor-suppressor genes

such as PTEN, RB1, and TP53 often exhibit loss-of-function mu-

tations coupled with LOH, thereby removing all wild-type alleles

and rendering mutant alleles homozygous. Thus, genome-wide

LOH is an essential feature to consider in the landscape of alter-

ations of cancer genomes and has played a major role in analysis

of recent large-scale genomic studies of cancer subtypes (Cancer

Genome Atlas Research Network 2011). Whole-genome (and

transcriptome [RNA-seq]) shotgun sequencing (WGSS) of patient

tumor-derived DNA and RNA samples is now a common ap-

proach for interrogating cancer genomes and transcriptomes to

simultaneously determine structural and nucleotide-level aber-

rations that underpin malignancies (Mardis and Wilson 2009;

Shah et al. 2009, 2012; Stratton et al. 2009). The nucleotide res-

olution of these platforms allows the interrogation of all alleles in

both the genomes and transcriptomes of tumors, enabling com-

prehensive analysis of genomic aberrations and, importantly,

their consequent effect on transcription. Determination of the

comprehensive nucleotide-level landscape of monoallelic expres-

sion (MAE) across all expressed single-nucleotide polymorphisms

in genes associated with somatically induced LOH in the genome

has not yet been undertaken in cancer. The impact of MAE is two-

fold in understanding and prioritizing candidate genes from the
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perspective of haploinsufficiency when alleles are lost (Berger et al.

2011) or oncogenic potential when alleles are specifically amplified

( Jirtle 1999). Investigating MAE from the genomic-driven perspec-

tive via LOH can help to nominate genes whose expression of the

remaining allele may have selective advantages for tumorigenesis

and progression.

Ultimately, such characterizations are computational in na-

ture, requiring efficient and robust algorithms for effective bio-

logical interpretation of the data. For LOH analysis, several algo-

rithms have been developed for high-resolution genotyping arrays

(Lin et al. 2004; LaFramboise et al. 2005; Beroukhim et al. 2006;

Dutt and Beroukhim 2007; Staaf et al. 2008; LaFramboise 2009;

Närvä et al. 2010); however, this platform is limited to interrogating

fixed loci using hybridization intensities as a surrogate measure of

nucleotide abundance. In the context of WGSS, which demands

approaches for handling digital allelic count data, analysis of LOH is

not yet fully explored. We set out to develop a principled probabi-

listic model for genome-wide, nucleotide resolution inference of

LOH from paired tumor-normal sequence data. We examine the

distribution of all germline heterozygous single-nucleotide poly-

morphisms (SNPs) inferred from normal DNA and probabilistically

infer LOH in the corresponding loci of the tumor DNA using a

hidden Markov model (HMM) approach. Our approach differs from

previous methods that have predicted LOH in sequencing data by

comparing allele frequencies independently for each site (Zhao

et al. 2010) and for segmentation into regions for exome capture

(Sathirapongsasuti et al. 2011) and whole-genome data (Boeva

et al. 2011).

Several important challenges present themselves in this

problem. First, heterozygous SNPs in the germline DNA are non-

uniformly distributed across the genome; therefore, genomic dis-

tance between adjacent loci needs to be considered in the analysis.

Second, the input data representing the observed allelic counts in

the tumor DNA are discrete in nature and thus are not well suited to

commonly used Gaussian or Student’s-t distributions that are often

used for the analogous problem in continuous array data. Third, the

allelic count data from the tumor DNA will reflect the proportion of

normal cells that are admixed with the tumor cells, consequently

leading to the dilution of somatic alteration signals in the genome.

Fourth, allelic skew due to allele-specific copy number amplifica-

tions (ASCNA) can often be erroneously interpreted as true loss of

heterozygosity. Generally, ASCNA should still retain signal from the

unamplified allele; however, the amplified allele can dominate the

overall signal (LaFramboise et al. 2005; Dewal et al. 2011). Figure 1

demonstrates that the allelic distribution for region (iv) is shifted

away from diploid heterozygosity but should not be confused as

Figure 1. Illustration of empirical allelic ratios between tumor and normal genomic sequencing data from chromosome 20 of a triple-negative breast
cancer genome (SA225), and effects of copy number. (A) Allelic ratio data of heterozygous loci in the normal genome are centered around 0.5, which
represents the presence of two alleles. (B) At the same corresponding loci, allelic ratios in the tumor genome reveal four examples of somatically acquired
segments of allelic imbalance in regions (i)–(iv). (C ) The segmental copy number of the tumor helps give context to the allelic data: (i) copy neutral LOH
(NLOH), AA/BB; (ii) deletion-induced LOH (DLOH), A/B; (iii) amplified LOH (ALOH), AAA/BBB; and (iv) allele-specific amplification (ASCNA), AAAB/ABBB.
Allelic ratio value is defined as the reference read counts divided by total depth at a given position. A and B represent reference and nonreference alleles in
the genotype, respectively.
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LOH. Thus, analytical approaches should consider somatic copy

number changes when inferring LOH. We note that many of these

challenges are similarly presented in the analysis of high-density

genotyping arrays. Some of the solutions we propose below are in-

spired by work originally designed for arrays (LaFramboise et al.

2005; Bengtsson et al. 2010; Greenman et al. 2010; Van Loo et al.

2010; Yau et al. 2010; Li et al. 2011), although with specific appli-

cation to the underlying distributional assumptions of digital allelic

count data presented by genome sequencing.

To address these challenges, we developed a statistical ap-

proach called APOLLOH to infer regions of LOH from paired tu-

mor-normal data (see Methods for details). Our approach relies on

three inputs: (1) the set of genome-wide heterozygous SNP posi-

tions inferred from the normal genome, (2) the copy number

profiles inferred from the tumor genome, and (3) the allelic counts

of the tumor data for each heterozygous SNP position from 1. We

fit a novel, nonstationary HMM (accounting for nonuniform dis-

tances between adjacent observations) to these allelic counts to

map each SNP to heterozygous (HET), homozygous (LOH), or al-

lele-specific amplification (ASCNA) marginal genotypes (Table 1),

accounting for all somatic deviations away from heterozygosity.

The model uses state-dependent binomial distributions to model

the allelic counts and uses a two-component mixture to model the

proportion of the observed signal expected to come from normal

cells (Laframboise et al. 2007; Yau et al. 2010; Li et al. 2011). We

applied the model to 23 triple-negative breast cancer (TNBC, de-

fined by the absence of ER/PR receptor expression and the absence

of ERBB2 gene amplification) patient samples whereby tumor and

normal DNA was sequenced up to ;303 coverage using whole-

genome shotgun Illumina and SOLiD platforms. For all 23 sam-

ples, Affymetrix SNP 6.0 data—a standard, orthogonal technology

commonly used to profile LOH in tumor genomes—were also ac-

quired. These data served as a benchmark for systematic compar-

isons of accuracy of each of the novel aspects of the APOLLOH

method against baseline methods. We include an in silico mixing

experiment that establishes the relative merit of modeling normal

contamination while determining the contamination levels that

render tumor signals indistinguishable from normal signals at

both 303 and 603. We generated RNA-seq data from the tumor

transcriptomes of 22 patients in order to permit studying the

consequence of LOH predicted in the genome on allele-specific

expression in the transcriptome. Our results therefore describe the

first nucleotide-resolution genome/transcriptome-wide integrated

analysis of LOH and MAE in a population of breast tumors and the

landscape of allele-specific somatic structural alterations un-

derpinning MAE in TNBC. Finally, we postulate on the merits of

considering LOH when interpreting allelic distributions acquired

from somatic point mutations for temporal ordering and subclonal

inference.

Results

Application of APOLLOH to profile LOH in 23
deep-sequenced breast cancer genomes

APOLLOH can be summarized as a framework that progressively

builds on the standard naive, independent, identically distributed

(iid) binomial mixture model (Goya et al. 2010) with the addition

of three features. First, the framework is an HMM that inherently

accounts for spatial correlation. Next, copy number prior distri-

bution is included to allow an expanded state space within am-

plified events and to distinguish ASCNA and LOH regions. Finally,

the emission component explicitly accounts for normal cell con-

tamination. Figure 2 illustrates the prediction improvements be-

tween model variants, cumulatively implementing each feature.

The description of APOLLOH is outlined in the Methods, and full

mathematical details are described in the Supplemental Methods,

Supplemental Figure S1, and Supplemental Table S1.

We used whole-genome shotgun sequencing (WGSS) to gen-

erate 23 triple-negative breast cancer (TNBC) tumor-normal pairs

from a cohort of patients described in a larger study (Shah et al.

2012). Seventeen and six patients were sequenced to generate

a median of 78 Gb aligned per sample (;263 sequence coverage) on

the Applied Biosystems SOLiD (Life Technologies) and 86 Gb

aligned per sample (;293) on the Illumina HiSeq sequencing

platforms, respectively (Supplemental Table S2). Each genome was

aligned to the reference genome using BioScope for SOLiD and BWA

(Li and Durbin 2009) for Illumina data. The transcriptomes of 22 of

these tumors were sequenced with RNA-seq on the Illumina GAii

platform. The full analytical workflow for analysis of these data sets

is presented in Supplemental Figure S2 and described in Methods.

Initial benchmarking of WGSS against genotyping arrays demonstrates
that the platforms are correlated

We compared the APOLLOH results applied to the WGSS data with

Affymetrix SNP6.0 data obtained from the same DNA extractions.

We observed statistically significant positive correlation between

the allelic ratios of predicted APOLLOH segments and the median

B-allele frequency for overlapping SNP6 probes with each seg-

ment (Spearman’s rho = 0.72, p < 0.001) (Supplemental Fig. S3;

Supplemental Methods), demonstrating that WGSS is compara-

ble to the SNP6 platform for analyzing allelic imbalance in cancer.

The correlation coefficients across the cases were also significantly

associated with the APOLLOH-estimated normal contamination

(Spearman’s rho = �0.71, p < 0.001) (Supplemental Fig. S4A; Sup-

plemental Table S3), indicating that higher tumor content led to

better platform agreement. Furthermore, the separation between

predicted LOH, HET, and ASCNA clusters (Fig. 3A) were observed to

Table 1. APOLLOH model state representations of genotypes and
zygosity status

State K
Total copy
number (c) Genotype (G) Zygosity status (ZS)

1 K2 1–2 A/AA LOH
2 AB HET
3 B/BB LOH
4 K3 3 AAA LOH
5 AAB HET
6 ABB HET
7 BBB LOH
8 K4 4 AAAA LOH
9 AAAB ASCNA
10 AABB HET
11 ABBB ASCNA
12 BBBB LOH
13 K5 5 AAAAA LOH
14 AAAAB ASCNA
15 AAABB HET
16 AABBB HET
17 ABBBB ASCNA
18 BBBBB LOH

Gt is inferred to be one of 18 possible states from an expanded list of
genotype states divided into groups of states Kc based on increasing levels
of copy number c. Post-assignment of zygosity status ZS helps represent
the final interpretation that maps to each genotype state.

LOH and monoallel ic expression in breast cancer
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vary over a dynamic range such that the distance between cluster

centers was correlated with the proportion of normal content in

the samples (Spearman’s rho = �0.81, p < 0.001) (Supplemental

Fig. S4B).

Evaluation of APOLLOH indicates model features systematically
improve performance

Having established that WGSS and SNP6 allelic data were in general

agreement, we examined the benefits of systematically modeling

three key features of spatial correlation, copy number awareness,

and normal cell contamination by comparing modular variations

of the APOLLOH model (Fig. 2). Setting input copy number sta-

tus to diploid for all positions reduced the framework to a stan-

dard HMM that did not model copy number (APOLLOH-noCN)

or normal contamination. Setting stromal proportion s to zero in

APOLLOH reduced the model to an HMM that modeled copy

number but did not account for normal contamination (APOLLOH-

noS). SNVMix (Goya et al. 2010) genotypes were used as the baseline

naive i.i.d. binomial mixture model that did not account for the

three features.

Figure 2. Systematic comparison of loss-of-heterozygosity (LOH) predictions for chromosome 20 of a triple-negative breast cancer genome (SA225).
The OncoSNP software (Yau et al. 2010) was applied on an orthogonal platform, Affymetrix SNP6 arrays, and served as the ground truth data set for
evaluation. SNVMix (Goya et al. 2010) was used to predict homozygous (LOH) and heterozygous (HET) genotypes on the whole-genome shotgun
(WGSS) data to represent the independent, identically distributed (iid) model. APOLLOH is the full model that models copy number (CN) and normal
contamination (SP). APOLLOH-noCN is a model variant of APOLLOH that analyzes WGSS without copy number or estimating normal contamination
parameter, but models spatial correlation (SC) to predict only LOH and HET in a reduced state space. APOLLOH-noS models copy number but not normal
cell proportion, predicting additional marginal states of allele-specific copy number amplification (ASCNA) in an expanded state space. Copy number
results were predicted by HMMcopy (Supplemental Methods). Copy number states are amplification (AMP, four to five copies), neutral (NEUT, two
copies), hemizygous deletion (HEMD, one copy), and homozygous deletion (HOMD).

Ha et al.
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We evaluated LOH predictions for SNVMix, APOLLOH-noCN,

APOLLOH-noS, and APOLLOH on the 23 TNBC WGSS samples

using predictions from SNP6 array data analyzed by OncoSNP

(Yau et al. 2010) as ground truth (Supplemental Methods). Pre-

cision, recall, and F-measure metrics were computed (Supplemental

Methods) for each model variant and tumor sample (Fig. 3B; Sup-

plemental Table S4A,B). SNVMix LOH predictions, determined by

homozygous genotypes at each site independently using a global

threshold on genotype probabilities, showed significantly lower

sensitivity across all samples (median recall 0.09). APOLLOH-noCN

had significantly higher recall (0.98, one-tailed Wilcoxon-signed-

rank test, p < 0.001) and F-measure (0.83, p < 0.001) compared with

SNVMix, establishing the benefit to modeling spatial correlation.

APOLLOH-noS had significantly higher precision than APOLLOH-

noCN (0.94 compared with 0.83, p < 0.001) due to the ability to

distinguish LOH and ASCNA in amplified copy number regions,

thereby reducing false-positive LOH calls as shown in the q-arm in

Figure 2. The F-measure of APOLLOH-noS (0.92) was also signifi-

cantly higher than APOLLOH-noCN (p < 0.01). The full APOLLOH

model, which explicitly models normal contamination, also had

a high F-measure with a median of 0.91, which was not significantly

different from APOLLOH-noS (two-tailed Wilcoxon-signed-rank

test, p = 0.11).

To assess the benefits of modeling copy number, we used

278,229 OncoSNP-predicted ASCNA positions as ground truth

to evaluate performance in distinguishing LOH and ASCNA.

APOLLOH-noCN correctly called only 6% (recall) as biallelic and

had a precision of 0.39. In contrast, APOLLOH demonstrated

median recall of 0.73 and precision of 0.82 (Supplemental Table

S4C), firmly establishing that explicit consideration of copy number

is essential for distinguishing LOH and ASCNA.

For five cases, we also evaluated performance of APOLLOH on

an additional benchmark data set by applying the model to whole-

exome sequence data published previously (Shah et al. 2012).

Using SNP6 as truth, the median precision, recall, and F-measure

were 0.85, 0.95, and 0.91, respectively (Supplemental Table S4D),

drawing similarities to the WGSS evaluation. The agreement of

LOH in these cases across three orthogonal data platforms provides

an additional source of validation and demonstrates high confi-

dence in the APOLLOH predictions.

Tumor-normal admixture simulation demonstrates performance
maintained at 34% tumor content

We assessed the effectiveness of APOLLOH in predicting allelic

imbalance and estimating normal proportion under varying pro-

portions of tumor-normal content by using real data in a con-

trolled in silico experiment. We sampled reads from a tumor sample

(SA225) and its matched normal data to generate nine genome-

wide data sets for 303 and 603 at proportions of 0.9 to 0.1

normal content. Based on the 13.8% original predicted normal

Figure 3. Comparison and evaluation of APOLLOH results using data from Affymetrix SNP6.0 genotyping arrays as the benchmark. (A) Initial
benchmarking by comparing WGSS-derived allelic ratios and SNP6 B-allele frequencies. Three samples are shown with LOH clusters centered at locations
reflecting APOLLOH normal contamination estimation. (B) For the 23 TNBC samples, precision, recall, and F-measure metrics were computed for LOH
predictions from each APOLLOH model variant and SNVMix using OncoSNP (Yau et al. 2010) predictions (from SNP6 data) as the ground truth.
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contamination for this case, we conservatively used 15% to de-

termine the following expected normal proportions: 0.915, 0.830,

0.745, 0.660, 0.575, 0.490, 0.405, 0.320, and 0.235. Figure 4A

shows how the increased subsampling of normal proportion af-

fects the signal of observable allelic imbalance in the 303 data. For

303 sampled coverage, APOLLOH accurately estimated the nor-

mal proportion parameter s for each mixture #0.745 with signif-

icant overall correlation (Spearman’s rho = 0.92, p < 0.001) (Fig. 4B;

Supplemental Table S5). The F-measure (Fig. 4C; Supplemental

Table S5) for each mixture using SNP6 for ground truth comparison

(from the original tumor DNA) indicated that high performance

(F-measure = 0.94) was achieved at normal content of 0.58 and was

maintained even at 0.66 (F-measure = 0.75). At high levels of

contamination, inspection of the data clearly shows that allelic

imbalance levels cannot be detected, because the contribution of

heterozygous ratios from normal cells dominates the overall signal

(Fig. 4A). At 603 coverage, the performance was consistent across

all admixture levels, suggesting that sequencing genomes to such

depths will likely lead to improved LOH prediction.

Comparison of performance of the full APOLLOH model to

the APOLLOH-noS showed that modeling normal contamination

modestly increased performance (Fig. 4C). Therefore, we suggest

that the parameter estimation of the binomial even without direct

inference of s adapts reasonably well to the altered distributions

induced by normal contamination. In addition, we noted several

anecdotal examples in which accuracy was improved in the full

model over APOLLOH-noS (Supplemental Fig. S5). The estimate of

the normal proportion of the full model has many additional

benefits including informing case-specific stringency thresholds

for somatic point mutation prediction and the depth of sequenc-

ing that would be needed to recover somatic point mutations.

Taken together, these results establish the genome-wide estimation

of normal contamination from APOLLOH as an effective indicator

of normal cell admixture and provide a reasonable estimate of the

upper bound of normal contamination where tumor signal can

still be extracted from the data at 303 and 603 coverage.

Genomic landscape of allelic imbalance reveals widespread
LOH in TNBC

To infer LOH profiles in the TNBC genomes, we ascertained the

copy number profiles from the WGSS data (Fig. 5). The resulting

Figure 4. Tumor-normal sampling admixture experiment. Nine mixture proportions generated by sampling reads from the tumor and normal BAM
files were analyzed (see Methods). (A) APOLLOH results are shown for chromosome 9 of mixture proportions of 0.09, 0.26, 0.43, 0.60, and 0.77 tumor
reads sampled to 303. (Tumour100) Results from the original tumor sample. (B) The normal proportion parameter s inferred by APOLLOH was signifi-
cantly correlated (Spearman’s rho = 0.92) with the mixture proportions of 0.1–1.0 (increments of 0.1) at 303 and 603. (C ) The F-Measure performance of
APOLLOH and APOLLOH-noS (not accounting for normal contamination) for 303 and 603 admixtures was evaluated using Affymetrix SNP6.0 data as
ground truth.
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copy number landscape resembled the landscape obtained from an

external cohort of 118 basal-like (a subtype of TNBC) breast cancer

samples profiled using SNP6 arrays (Curtis et al. 2012). Application

of APOLLOH to the WGSS data from the 23 tumor TNBC samples

then yielded a total of 37,204 LOH, 19,798 HET, and 2568 ASCNA

segments (Supplemental Table S6A). LOH events were further

characterized into 9447 (25%) deletion LOH (DLOH), 17,875

(48%) copy-neutral LOH (NLOH), and 9882 (27%) amplified LOH

(ALOH). While the number of NLOH segments was higher than

DLOH, the median length of a NLOH region was shorter (97 kb

compared with 145 kb), and collectively covered, on average across

the samples, less of the genome (16% compared with 23%). In

contrast, HET regions were much larger with a median of 409 kb

and accounted for >49% of the genome on average, compared with

46% by LOH events (Supplemental Fig. S6A; Supplemental Table

S6B). The full list of APOLLOH-predicted segments is in Supple-

mental Table S7.

LOH genes were determined by assessing complete overlap

within predicted LOH segments. On average for each case within

the genome, 3404 (16%), 2406 (12%), and 1072 (5%) genes within

DLOH, NLOH, and ALOH segments were observed, respectively

(Supplemental Fig. S6B; Supplemental Table S6C). The deletion-

induced LOH accounted for the majority of the landscape; how-

ever, copy neutral LOH contributed substantially with notably

higher gene frequencies within chromosomes 3p, 7, 8p, 10, 12, 14,

17, and 22 (Fig. 5). Regions with the highest frequency of amplified

LOH were 1q and 17q (Supplemental Fig. S7). The most frequent

large-scale event observed in the landscape of zygosity (Fig. 5) was

the whole chromosome-level loss of heterozygosity of chromo-

some 17 in 18 cases (78%). The full list of gene-based LOH alter-

ation frequencies is found in Supplemental Table S8.

For genes falling within amplified regions across the samples,

the median proportion of LOH, ASCNA, and balanced CNA (BCNA)

was 57%, 28%, and 10%, respectively (Supplemental Table S6D).

Amplified and copy neutral LOH are consistent with the notion that

segmental amplifications or duplications are the result of at least

two copy number events in the evolutionary history of the tumor.

We noted several examples, specifically on chromosome 17, that we

speculate are regions whereby compound deletion–amplification

events likely occurred in sequence (Supplemental Fig. S9). The dis-

tribution of the number of compound events across the 23 cases

showed a wide variance, ranging from 471 to 2022 segments (Sup-

plemental Fig. S9). This shows that at diagnosis these tumors have

undergone varying degrees of complex genomic architecture evo-

lution. We reported similar findings from analysis of somatic SNV

mutation events in TNBC (Shah et al. 2012). Intriguingly, the

Figure 5. Genome-wide gene frequencies of APOLLOH predictions, copy number profiles from the current 23 cases, and an external (METABRIC) data
set (Curtis et al. 2012), and monoallelic expression. From top to bottom, the first and second panels show copy number profiles for cohorts of 118 basal-
like subtype breast cancer patients from METABRIC, analyzed on Affymetrix SNP6.0 arrays, and the 23 TNBC patients. Deletion gene frequency profiles
(negated for display purposes) in both data sets show similar patterns to deletion LOH frequencies shown in the third panel. The fourth and fifth panels,
respectively, show the profile of genes affected by copy neutral LOH and the profile of overall LOH events including genes found within deletions, copy
neutral regions, and amplifications. The last panel shows the frequency profile of genes that are observed with monoallelic expression (MAE) as a con-
sequence of genomic LOH events for 22 samples with available RNA-seq data.
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number of compound events (NLOH and ALOH segments) did not

correlate significantly (Spearman’s rho = 0.22, p = 0.31) with the

number of somatic missense and nonsense mutations for each

sample. This suggests that the rate of accrual of complex genomic

architecture aberrations is independent of the rate of point muta-

tion accrual in the evolution of TNBCs. Thus, the relative contri-

bution of distinct mutagenic mechanisms that shape the genomes

of TNBC varies widely across the population. The significance of

this observation in a clinical context is unknown; however, these

results emphasize that genomic diversity in the form of complex

CNAs should be considered alongside mutational profiling to

assess the degree of clonal evolution in tumors.

Somatic inactivation of genes with germline stop codon mutations

We investigated the effects of LOH on genes that harbor heterozy-

gous germline stop codon variants. We conservatively determined

1390 truncating variants that overlapped the normal heterozygous

positions in our data set (Methods). Across the 23 cases, we found

that LOH led to the loss of the amino acid coding allele in 291 po-

sitions, leaving only the stop codon allele that encodes a truncated

protein (Supplemental Fig. S10; Supplemental Table S9A). In con-

trast, 582 events were observed to have the truncating variant lost

due to LOH. Using 44,754 synonymous germline variants as a

background distribution where 18,154 variant events (41%) were

retained after LOH, we noted that the proportion of lost truncating

variant alleles due to LOH was significantly enriched (x2, p < 0.001).

This suggests that selection on somatically driven LOH of a germline

background of truncating polymorphisms may lead to removal of

truncated genes. However, the 291 events still represent an in-

triguing upper bound on the possibility of partial or complete loss of

function in the affected genes. The rate of occurrence (12.7 6 6.4 per

case) was comparable at the same order of magnitude to the

number of genes affected by nonsynonymous coding mutations

typically reported in epithelial cancer genomes (Ding et al. 2008;

Shah et al. 2009, 2012; Pleasance et al. 2010a,b), indicating that

somatic inactivation by LOH of germline truncating protein vari-

ants likely contributes meaningfully to the mutational landscape of

TNBC. Moreover, this analysis outlines a genome-wide substrate

composed of germline and somatic genetics upon which selection

may be acting. Larger studies would be required to determine its

implication in the pathogenesis of TNBC.

Analysis of LOH and somatic mutations reveals potential subclonality
and temporal ordering

We next sought to interpret somatic point mutations in the con-

text of their genomic architectures as defined by APOLLOH. We

investigated 680 missense and 55 truncating (nonsense) muta-

tions (Supplemental Table S9B) using previously validated data

(Shah et al. 2012) and prediction tools (Methods) from the 23 cases

used in this study. We observed that in 63 (9.3%) of the missense

events, LOH rendered the mutation homozygous, which included

mutations affecting TP53, PTEN, ERBB2, and PIK3CA. The muta-

tion in PIK3CA was a canonical activating kinase domain muta-

tion, H1047R, and was found in a region of ALOH, agreeing with

previous findings (LaFramboise et al. 2005; Dewal et al. 2011) that

the mutation was acquired early and was selectively amplified. In

addition, mutations rendered homozygous due to LOH affected

genes with roles in actin cytoskeleton and microtubule stabiliza-

tion functions (KLHL1, ESPN, DIAPH1, CASC5), extracellular ma-

trix (ECM) interactions (LAMA1), angiogenesis (BAI2), and cell

division (CDC5L, CDCA7). In the truncating events, nine were

homozygous for the stop codon (Supplemental Table S9C), leading

to complete inactivation of genes such as RAD51C (involved in

homologous repair), THSD4 (involved in ECM assembly), JAK1

(involved in the IFN-alpha/beta/gamma signal pathway), and

CDK12 (a cyclin-dependent kinase involved in splicing) (Supple-

mental Table S9B).

For biallelic inactivation due to DLOH, temporal ordering

of coincident mutation and the CNA deletion is challenging to

ascertain. However, for mutations rendered homozygous that

overlap NLOH and ALOH, the parsimonious explanation for

the combined observations is that the mutation events likely

arose first, and subsequent duplication or amplification of the

remaining mutant allele followed. Thus, the resulting temporal

ordering suggests that these are candidate tumorigenic mutations

that were selected for throughout the evolutionary history of the

tumor.

In contrast, 247 total missense and nonsense mutations in

regions of LOH have allelic ratios that were skewed toward the

wild-type allele (Supplemental Table S9B). These are more difficult

to interpret, since there are competing explanations: (1) The events

may be mutually exclusive, occurring independently in separate,

individual cells; (2) in NLOH and ALOH regions, the mutation may

have occurred subsequently to the LOH and amplification events,

leading to the presence of the mutation in only a portion of the

alleles. Whether subclonal or relatively late in the evolutionary

process, these mutations were likely not early drivers of tumori-

genesis. Ultimately, single-cell resolution would be required to

adequately interpret their significance (see Discussion).

Monoallelic gene expression events associated with genomic
LOH reveal disrupted pathways in TNBC

We investigated the association between APOLLOH results and

transcriptome allelic ratio (TAR) by analyzing 22 TNBC patients for

which tumor RNA-seq data were available (Supplemental Methods).

For LOH-predicted segments, the corresponding TAR is expected to

be monoallelic. In contrast, TAR for HET- and ASCNA-predicted

segments may be observed as either balanced, skewed, or mono-

allelic depending on factors such as epigenetic modifications and

mutations in regulatory elements (Pastinen and Hudson 2004).

Across the cohort, we observed that the median TAR values for LOH,

ASCNA, and HET were 0.83, 0.71, and 0.63, respectively (Fig. 6A).

We also observed that the median TAR of APOLLOH-predicted

LOH segments and the APOLLOH-estimated normal proportion

parameter s showed statistically significant negative correlation

(Spearman’s rho = �0.91, p < 0.001) (Fig. 6B; Supplemental Table

S3), explaining the observed overall deviation of the TAR distribu-

tion away from 1.0. Thus, the RNA-seq data corroborated the pre-

diction of normal proportion from APOLLOH in addition to con-

tributing to the accuracy of LOH calls. In contrast, the correlation

for TAR within LOH regions and normal contamination predicted

by OncoSNP was not as strong, but still significant (Spearman’s

rho = �0.85) (Supplemental Fig. S11; Supplemental Table S3).

The unbiased genome-wide coverage of WGSS nominated

more normal heterozygous loci in each of the 23 cases compared

with the full scaffold of probes on the SNP6 platform (Supplemental

Table S10). Subsequently, the number of overlapping RNA-seq

positions with available coverage was also approximately twofold

more for WGSS (mean 108,778 6 31,832) compared with SNP6

(mean 48,224 6 13,570) (Supplemental Fig. S12). Moreover, the

high resolution offered by genome sequencing enabled APOLLOH

to predict 2021 LOH segments smaller than 3 kb, of which 1481
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were not predicted by OncoSNP; these predictions were supported

by similar RNA-seq allelic ratios (median of 0.83 and 0.80, re-

spectively). In fact, 1020 of 1481 segments had boundaries located

completely between or outside of the Affymetrix SNP6 probe

scaffold (Supplemental Table S11). These results demonstrate that

whole-genome sequence data are more suitable for comprehen-

sively analyzing LOH and allelic expression at resolutions that are

not attainable by SNP6.

Monoallelic expression (MAE) can arise as a result of genomic

allelic loss via LOH events. To characterize the occurrence of this

mechanism, we determined genes that exhibited MAE in the tran-

scriptome established by co-occurring predicted LOH events (Sup-

plemental Table S12; Methods). An average of 3137 genes per case

exhibited MAE, of which 2017 (64%) were observed to be co-

incident with LOH (Fig. 6C). Deletion LOH gave rise to an average of

962 genes with MAE, whereas copy neutral and amplified LOH

events led to an average MAE of 696 and 358 genes, respectively

(Supplemental Table S6E). In contrast, there were far fewer instances

of MAE of genes within HET, BCNA, and ASCNA regions, averaging

993, 29, and 98 per case, respectively. Only

three (14%) cases had more genes impli-

cated within these regions, than within

regions of LOH (Fig. 6D). This suggests

that genomic LOH explained the majority

of MAE in TNBC and established a lower

bound on the proportion of MAE that can

be directly attributed to LOH. As a result,

we suggest that only a minor proportion

of MAE could be attributed to other mod-

ifications of the genome such as epige-

netic factors and mutation. Moreover,

we observed significant positive correla-

tion between the abundance of MAE genes

within HET, BCNA, and ASCNA regions

and the predicted normal proportion

(Supplemental Fig. S13), indicating that

the MAE genes in these regions were

likely germline (epigenetic) events whose

signals became more detectable as nor-

mal cell content increased.

We next examined the genome-wide

landscape of LOH-associated MAE. In

general, the pattern of LOH-induced MAE

closely mirrored the landscape of geno-

mic LOH as shown in Figure 5. However,

the absolute frequency of events was re-

duced, most likely due to lower expression

of genes in deletion LOH regions, and our

conservative approach for establishing

MAE. Examination of the copy neutral

frequencies also closely mirrors the shape

across the genome of the LOH-associated

MAE profile. Consistent with our obser-

vation from the genomic LOH landscape,

the most frequent genes exhibiting LOH-

associated MAE were found within chro-

mosomes 3p, 5q, 8p, 10p, 14, and 17 (Fig.

5; Supplemental Fig. S14; Supplemental

Table S8).

To further refine the interpretation

of the LOH-induced MAE genes, we per-

formed a pathway analysis to examine

biological functions that could be modulated by these genes. Using

the Reactome (Wu et al. 2010) database, we projected the genes

onto a network of interacting proteins and clustered this network

into highly connected modules (Methods). A total of 11 modules

were identified, with seven having significantly enriched path-

ways (FDR < 0.05) (Fig. 7; Supplemental Table S13). In particular,

Module 0 contained pathways involving cell-shape/motility, focal

adhesion and integrin signaling; Module 2 contained M-Phase

genes; Module 3 contained homologous recombination (HR); and

Module 4 contained Wnt and cadherin signaling, and chromatin-

remodeling complexes. Haploinsufficiency in HR genes is known

to lead to chromosome fragmentation and genome instability

(Thacker and Zdzienicka 2003; Date et al. 2006), and Wnt, cell

cycle, and focal adhesion are all known from functional studies to

modify tumor initiation and/or tumor progression and further-

more have been specifically associated with breast cancer patho-

genesis. Intriguingly, genes in Module 1 nominated functionally

enriched gene sets that are linked along a chain of related onco-

genic pathways. Notably, integrin signaling, regulation of actin

Figure 6. Integrative analysis of APOLLOH results and transcriptome RNA-seq expression. (A) The
distribution of transcriptome RNA-seq symmetric allelic ratios that fall within HET, ASCNA, and LOH
predicted regions are significantly different (pairwise Wilcoxon one-tailed test, p < 0.01). (B) The median
symmetric allelic ratio of RNA-seq data within predicted LOH segments for each sample, represented as
a point, strongly negatively correlated (Spearman’s rho = �0.91) with estimated normal proportion pa-
rameter s (first principal component line is shown). (C,D) Distribution of the number of monoallelic
expressed genes within genomic loss-of-heterozygosity (LOH), heterozygous (HET), and allele-specific
copy number amplification (ASCNA) regions in 23 breast cancer samples. (C ) The number of MAE genes
established by LOH events are categorized into deletion (DLOH), copy neutral (NLOH), and amplification
(ALOH) and sorted by total LOH in descending order. (D) The number of genes with MAE that overlapped
genomic HET, balanced CNA (BCNA), and ASCNA regions are shown in same sorted order as in C.
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cytoskeleton, focal adhesion, and Wnt signaling exhibit consid-

erable cross talk with growth factor signaling (Turner 2000) due to

EGFR and PI3 kinase, both of which are known oncogenic drivers

in breast cancer. Our results now implicate a genomic mutational

mechanism for disrupting the normal function of these pathways,

in the form of LOH-associated MAE, that has been underappreciated

in the literature. The identification of these core pathways in our

analysis indicates that LOH-associated MAE contributes a measur-

able component of the somatic mutational landscape which also

includes CNAs, point mutations, insertions/deletions, and epige-

netic changes that collectively modulate biological function.

Discussion
We have described a probabilistic framework for predicting regions

of LOH in genome sequencing data of cancers, and implemented

the model as a nonstationary HMM called APOLLOH. The algo-

rithm models discrete, digital allelic count, taking advantage of

the base-pair resolution quality offered in sequencing data. The

experimental workflow allows the analysis to be performed at an

unprecedented number of possible heterozygous sites in the nor-

mal and, in contrast to genotyping arrays, are unrestricted to fixed

loci. We applied the algorithm to 23 triple-negative breast cancer

genomes sequenced to ;303 coverage on two massively parallel

sequencing platforms. We also investigated the extent of LOH in

affecting allele-specific expression by analyzing matching tumor

transcriptome RNA-seq data. Its application to this data set con-

stitutes the largest study for analyzing a sequenced cancer cohort

with the aim of examining loss of heterozygosity and its role in

monoallelic expression.

The performance of the variants of the APOLLOH framework

shows progressively improved results when features are incremen-

tally added in order: spatial correlation, copy number data inclu-

sion, and normal contamination modeling (full model). The model

benefits from copy number particularly in regions of amplifications

where false-positive LOH predictions are reduced and instead at-

tributed as being a signal for allele-specific amplification. One caveat

with using OncoSNP for the basis of the evaluation is the inclusion

of germline LOH regions in the truth set; these regions will be de-

void of data in the APOLLOH analysis due to the inclusion of only

informative heterozygous positions (Fig. 2 at 20q11.22-23). This

may suggest that the observed recall (sensitivity) rates should, in

fact, be even higher.

Accounting for normal cell contamination did not signifi-

cantly improve accuracy in our benchmarking analysis; however,

we noticed that there were specific instances in which incorporation

of the s parameter allowed APOLLOH to be more sensitive to LOH

(Supplemental Fig. S5). Moreover, the full model has the advantage

of providing the normal proportion estimate for each sample, which

is useful not only for confirming the general validity of the LOH

predictions but also aides in interpretation of other somatic alter-

ations (e.g., point mutations) in the context of cellularity. This also

provides pathologists with objective, quantitative estimations of

cellularity that may be more accurate than manual inspection of

histological slides, which is the current standard practice.

We used LOH results to interpret somatic point mutations in

the context of temporal ordering of genomic aberrations and sub-

clonality. The presence of complex clonal populations and tumor

heterogeneity was recently shown when inferring the mutational

profiles of TNBC (Shah et al. 2012). While APOLLOH explicitly ac-

counts for normal cell contamination, it does not yet inherently

model subclonality and heterogeneity for LOH prediction. The

presence of subclonal allelic imbalance signals, among other tumor

cells admixed with normal cells, is more difficult to detect, poten-

tially leading to false negatives with the current model. This is an

exciting and on-going subject of future extensions and presents

a challenging task particularly enabling the analysis of the interplay

between chromosomal architecture, such as sequential compound

copy number events, and subclonal somatic mutations in the con-

text of LOH. Motivation for reconstructing the temporal sequence

Figure 7. Pathway enrichment analysis of genes with monoallelic expression (MAE) established by loss-of-heterozygosity (LOH) events. Gene networks
were inferred using Reactome Functional Interaction software (Wu et al. 2010) within the Cytoscape (Smoot et al. 2011) plug-in. LOH-induced MAE genes
were used in the analysis and subsequently clustered into modules. At a false discovery rate (FDR) of 0.05, significantly enriched pathways included
Modules 0–5. Shown are the Enrichment Map (Merico et al. 2010) networks generated for the significant pathways (Supplemental Table S13), high-
lighting the interactions between pathways identified within each of the six modules.
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of genomic aberrations can be drawn from a recent study of primary

and cell line breast cancer SNP6 array data (Greenman et al. 2012).

Ultimately, the establishment of single-cell sequencing technolo-

gies (Navin et al. 2011; Hou et al. 2012; Xu et al. 2012) will drive

development of reliable solutions to help deconvolute the com-

plexities of profiling tumors with subclonal and tumor-normal ad-

mixture cell populations.

We report the landscape of allelic imbalance across 23 whole

triple-negative cancer genomes, surveying genes that are affected

by LOH predicted segments. The strongest signal resides in chro-

mosome 17, which is observed, in 78% of the cases, to have nearly

complete chromosomal level LOH. Despite the majority of LOH

events being induced by deletions in chromosome 17, nearly 20%

of cases show substantial copy neutral LOH, which would have

otherwise been overlooked if allelic-specific imbalance was not

considered. This result is similar to those previously reported in

another breast cancer cohort (Van Loo et al. 2010) and in a high-

grade serous ovarian data set (Cancer Genome Atlas Research

Network 2011), reinforcing the suggested genomic link between

TNBC and ovarian high-grade serous cancers (Bowtell 2010).

This is the first and largest sequencing study aimed at analyz-

ing genome and transcriptome data in combination to determine

LOH and its effects on allelic expression, particularly MAE. We

provided an analysis of MAE that investigates only the genomic-

driven perspective via LOH, providing a verification of APOLLOH

predictions and helping to nominate allelic imbalanced genes

whose expression may have biological impact to the progression

and state of the tumor. Indeed, pathway analysis of the genes

affected by LOH-associated MAE revealed core oncogenic path-

ways and therefore implicates LOH with coincident MAE as an

important mechanism of pathway abrogation that complements

copy number, point mutation, and epigenetic analysis. Interest-

ingly, the results show that a minority of MAE is associated with

diploid regions. This implies that either LOH is specifically targeting

regions of the genome with preexisting MAE or, more likely, that the

majority of MAE in TNBC is explained by fixed genome aberrations,

rather than epigenetic regulation. Full integration of all of these

molecular views of tumor landscapes are likely to reveal yet addi-

tional insights into tumor biology.

This study provides a framework for analysis of allelic im-

balance in tumor-normal genome sequencing experiments. The

analysis of 23 TNBC genomes shows that LOH is a prominent

feature of TNBC somatic aberrations and modulates a significant

portion of the transcriptome in the form of monoallelic expres-

sion. These results indicate that analysis of LOH is an integral

component to the comprehensive interpretation of cancer ge-

nomes, and we conclude that APOLLOH will complement the

growing arsenal of computational tools designed for cancer-

focused sequencing studies.

Methods

APOLLOH workflow overview
A full representation of the APOLLOH framework as a probabilistic
graphical model is given in Supplemental Figure S1, and all
mathematical details of the method are described in the Supple-
mental Methods. Biospecimen collection, histopathological review,
and library construction are also described in the Supplemental
Methods. Application of the method to the 23 tumor/normal data
set was carried out as follows.

APOLLOH analyzes positions P ¼ ftig T
i¼1

�
� that are heterozy-

gous SNPs in the normal genome. We obtained these using GATK

(McKenna et al. 2010), which predicted between ;1 and 2.2 mil-
lion positions genome-wide per patient (Supplemental Table S10).
Restricting the analysis to positions where both alleles are present
in the matched normal sample reduces the dimensionality of the
analysis to T loci and ensures that detected homozygosity will be
somatic events. From the tumor genome data, the read counts
mapping to the reference base (A allele), read counts mapping to
the nonreference base (B allele), and total depth at all positions in
P were extracted using SAMtools (Li et al. 2009) and represented as
a1:T, b1:T, and N1:T, respectively.

If the alleles are observed as equally likely, showing no skew
toward one particular allele, then the genotypes can be treated
symmetrically (e.g., AA and BB or AAB and ABB are treated the same)
using the symmetric reference count, �at ¼ max at ; btð Þ. APOLLOH
is flexible to use �a or a; however, in this study, we modeled the
alleles separately and therefore will describe the asymmetric ver-
sion of the model throughout.

APOLLOH uses copy number information that is provided as
biologically interpretable classes of segmental copy number changes
in the tumor sample: homozygous deletion (no copies), hemizygous
deletion (one copy), neutral (two copies), one copy gain (three
copies), and two and three copy amplifications (four and five
copies). Copy number status c1:T is then assigned to all positions
in P based on its overlap within the corresponding copy number
segment. Copy number profiling of the tumor genome aligned
reads was performed using an in-house HMM-based approach
called HMMcopy (Supplemental Methods; http://compbio.bccrc.
ca/software/hmmcopy/).

APOLLOH performs inference and segmentation of genotypes
G1:T given the input data a1:T, N1:T, c1:T from the tumor. Sub-
sequently, the genotypes at each position are encoded into the
corresponding zygosity status ZS1:T of LOH, HET, and ASCNA,
which are divided into groups of states based on copy number
(Table 1). APOLLOH is implemented as an HMM that simulta-
neously provides classification of regions into biologically in-
terpretable discrete genotype states and segments input data. The
tumor allelic ratio data are modeled using a mixture of binomial
distributions that also considers the proportion of normal cell
contamination in the sample. The HMM models spatial de-
pendency using state transition probabilities that account for the
distance between adjacent positions (Colella et al. 2007), and
deterministically informed by copy number status ct at each t 2 P.

Tumor-normal sampling mixture experiment

Nine whole-genome BAM files were generated and compiled by
sampling reads from the tumor and normal BAM files of SA225 at
mixture proportions of 0.1 increments. For each chromosome and
each mixture combination, the total number of reads was set to be
the same as the normal BAM file. This resulted in ;30.53 coverage
or 91 Gb of aligned reads for each genome-wide BAM file. We re-
peated this for nine more genome samplings at ;603. APOLLOH
hyperparameter settings for the Beta prior distribution of the nor-
mal proportion parameter s were assigned uniform settings, as =

5000 and bs = 5000. We used the copy number results from the
original tumor BAM file for APOLLOH analysis of all nine mixtures
in 303 and 603 samplings.

Truncating variant and mutation analysis

For germline truncating variants, normal heterozygous positions
for each sample were used. For somatic truncating mutations in the
SOLiD genomes, the published set of validated mutations (Shah
et al. 2012) was used; for the Illumina genomes, a set of mutations
was predicted using JointSNVMix (Roth et al. 2012) and filtered by
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the classifier MutationSeq (Ding et al. 2012). The positions for each
sample were annotated using snpEff (Cingolani 2012) (hg36.54),
and positions with codon effects ‘‘STOP_LOST’’ (germline only)
and ‘‘STOP_GAINED’’ were extracted. The remaining alleles fol-
lowing LOH were assigned as WTand MUT if the tumor allelic ratio
was >0.5 or <0.5, respectively; for the validated mutations, the
ultra-deep amplicon sequencing allelic read counts were used.

For nonsynonymous mutations, positions with the codon
effect ‘‘NON_SYNONYMOUS_CODING’’ were used.

Analysis of monoallelic expression

We used SNVMix to generate genotypes for all transcriptome po-
sitions intersecting loci used in the APOLLOH analysis. Parameters
for SNVMix were set using the two-component mixture, s 3 0.5 +

(1 � s)mg, where maa = 1, mab = 0.5, mbb = 0, and s is inferred by
APOLLOH on the genomic data. We compared these parameters to
the distributions of transcriptome allelic ratios (TAR) and found
them appropriate (Supplemental Fig. S15). A gene g was deter-
mined to have MAE status if the genotypes for all positions xg 2 P
overlapping g had a marginal posterior probability of being ho-
mozygous (paa + pbb) greater than heterozygous (pab).

Reactome FI (Wu et al. 2010) analysis was performed using
the Cytoscape v2.8.1 (Smoot et al. 2011) plug-in. Genes that had
LOH-MAE frequencies of 10 or greater were used in the analysis.
Significant pathways (FDR < 0.05) in Modules 0–5 were analyzed
using EnrichmentMap (Merico et al. 2010) analysis to determine
relationships between pathways within the module. For this anal-
ysis, we used gene sets, in GMT format, as described in Shah et al.
(2012).

Data access
The genome and transcriptome sequencing files can be down-
loaded at the European Genome-phenome Archive under acces-
sion number EGAS00001000132. The source code for APOLLOH
can be accessed at http://compbio.bccrc.ca/software/apolloh.
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