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ABSTRACT

Motivation: Identification of somatic single nucleotide variants
(SNVs) in tumour genomes is a necessary step in defining
the mutational landscapes of cancers. Experimental designs for
genome-wide ascertainment of somatic mutations now routinely
include next-generation sequencing (NGS) of tumour DNA and
matched constitutional DNA from the same individual. This allows
investigators to control for germline polymorphisms and distinguish
somatic mutations that are unique to the tumour, thus reducing the
burden of labour-intensive and expensive downstream experiments
needed to verify initial predictions. In order to make full use
of such paired datasets, computational tools for simultaneous
analysis of tumour-normal paired sequence data are required,
but are currently under-developed and under-represented in the
bioinformatics literature.

Results: In this contribution, we introduce two novel probabilistic
graphical models called JointSNVMix1 and JointSNVMix2 for jointly
analysing paired tumour-normal digital allelic count data from NGS
experiments. In contrast to independent analysis of the tumour and
normal data, our method allows statistical strength to be borrowed
across the samples and therefore amplifies the statistical power to
identify and distinguish both germline and somatic events in a unified
probabilistic framework.

Availability: The JointSNVMix models and four other models
discussed in the article are part of the JointSNVMix software package
available for download at [http://compbio.bccre.cal

Contact:

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

1.1 Next-generation sequencing of tumour genomes

Next-generation sequencing (NGS) technologies are playing an
increasingly important role in cancer research. Recent years have

*To whom correspondence should be addressed.

seen a number of studies exploring the mutational landscapes of

various _cancer subtypes. NGS investigations into prostate (Berger
etal., ), breast %2 1d ;mm)_ovanan
{lones er i), P01G: , Roood): [wie a1], R010),
pancreatic 1mm 010: el g Yachida
et al., R ; R

M_anhs_a,ndMsgd |2m_q A M) malignancies and
others (Pleasance ez all, 2009d, |ﬂ) have revealed new cancer genes,
new 1n31ghts into tumour evolution, comprehensive mutational
profiles and exploration of genomic architectures. These studies
have established NGS experiments as an extremely effective,
unbiased approach to study cancer genomes and perform genome-
wide somatic mutation discovery. In the near future, large-scale
international projects (Hudson et afl, [2010; IMclendon er all,

) generating vast sequence data repositories from hundreds of
individual tumours will be complete. As such there is a major need
for cancer-focused methods for robust, comprehensive interpretation
of this data.

The bioinformatics challenges in applying NGS to cancer research
are similar to mainstream NGS applications such as the 1000
genomes project m, ). One crucial difference is the
importance of distinguishing germline polymorphisms present in
healthy tissue from somatically acquired mutations in tumour cells.
This problem can be addressed by experimental design in which
DNA sampled from healthy normal tissue and DNA from tumour
tissue are sequenced from the same individual. Fully exploiting this
experimental design and the resulting correlated nature of the pair of
datasets poses computational challenges and opportunities that have
not yet been thoroughly addressed by the bioinformatics community.

1.2 Methods for discovering single nucleotide variants
and somatic mutations

Almost all methods that detect single nucleotide variants (SNVs)
from NGS data use a representation of digital allelic counts to
infer allelic abundance in the sample. For example, a heterozygous
germline SNV should be present in ~50% of all aligned reads at that
locus. In the cancer setting, allelic count data is used to distinguish
SNVs which are unique to the tumour DNA (somatic mutations)
from those SNVs which are present in the matched normal DNA
(germline polymorphisms).
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Screening the set of predicted SN'Vs in a tumour against databases
such as dbSNP WM) provides one method to address

this issue. The challenge with this approach is that there are 3—15
million SNVs per individual; early results from the 1000 genomes
indicate that 10-50% of these are novel events m, M).
This suggest that possibly millions of SN'Vs in a single individual
will be uncatalogued in polymorphism databases. These SNVs will
be falsely identified as somatic mutations if the primary strategy
for distinguishing somatic and germline events is screening against
public databases. In the future, as SNV databases become more
comprehensive the fraction of novel SNVs found in an individual
will decrease. However, even if databases were to capture 99%
of all germline SNVs present in an individual and that individual
carried 5 million SNVs, 50000 SNVs would remain uncatalogued.
This number is likely on the same order as the number of somatic
mutations present in a tumour. Hence, there is a danger that the
somatic mutations signal in a dataset could be overwhelmed by the
signal from these germline events.

A more robust approach to identifying somatic mutations is
to sequence a paired sample of DNA from normal and tumour
tissue from the same patient. The normal tissue can then act as
a control against which SNVs detected in the tumour can be
screened. A number of methods for discovering SNVs in NGS data
have been developed (DePristo et all, RO11l; |Gg¥a_et_al.|, R01d;
[Koboldt er all, £00d: IMcKenna er ai]. P0O1d). Tools specifically
tailored to somatic mutation discovery in normal/tumour pairs are
under-represented in the literature [although we note very recent
exceptions M,M;W,M)]. As such, ad hoc
approaches for detecting somatic mutations involve using standard
SNV discovery tools on the normal and tumour samples separately
and then contrasting the results post hoc using so-called ‘subtractive’
analysis. However, due to technical sources of noise, variant alleles
in both tumour and normal samples can be observed at frequencies
that are less than expected and can be difficult to detect. We show
that ad hoc methods would result in premature thresholding of
real signals and, in particular, result in loss of specificity when
detecting somatic mutations. We propose that simultaneous analysis
of tumour and normal datasets from the same individual will likely
result in an increased ability to detect shared signals (arising from
germline polymorphisms or technical noise). Moreover, we expect
that real somatic mutations that emit weak observed signals can be
more readily detected if there is strong evidence of a non-variant
genotype in the normal sample. Therefore, our hypothesis is that
joint modelling of a tumour—normal pair will result in increased
specificity and sensitivity compared with independent analysis.

To address this question, we developed a novel probabilistic
framework called JointSNVMix to jointly analyse tumour—normal
pair sequence data for cancer studies and a suite of more standard
comparison methods based on independent analyses and frequentist
statistical approaches. We show how the JointSNVMix method
allows us to better capture the shared signal between samples and
remove false positive predictions caused by miscalled germline
events, owing to statistical strength that can be borrowed between
datasets. The article outline is as follows: in Sections I}
B4 we formulate the problem, describe the JointSNVMix
probabilistic model and discuss our implementation of the learning
algorithm. Section describes synthetic benchmark datasets
and data obtained from 12 previously published diffuse large
B-cell lymphomas (DLBCL) cases using a tumour—normal pair

experimental design m, m). Ten of these cases were

sequenced to ~30x aligned coverage in tumour and normal using
whole genome shotgun sequencing. For the remaining two samples,
~8 GB were sequenced in tumour and normal using exon capture
sequencing. Section describes the comparison methods we
implemented in this study. SectionBlshows how our approach results
in increased specificity without loss of sensitivity when compared
with independent standard analysis. Finally, in SectionHl] we discuss
limitations to our method and propose future directions for the
approach of simultaneous analysis of multiple-related NGS cancer
samples.

2 METHODS

2.1 Problem formulation

Given tumour—normal paired allelic counts obtained from NGS sequence
data aligned to the human reference genome, we focus on the problem of
identifying the joint-genotype (see below) of the samples at every location in
the data with coverage. For simplicity, and following standard convention,
we imagine that each position has only two possible alleles, A and B. The
allele A indicates that the nucleotide at a position matches the reference
genome and B indicates that the nucleotide is a mismatch. In NGS data,
we can measure the presence of these alleles using binary count data that
examines all reads at a given site i and counts the number of matches, a’, and
mismatches, b’ m, m). In Figure[ﬂ we see how this formalism
can be extended to tumour—normal paired samples.

For a diploid genome, we consider all pairs of alleles that gives rise to the
set, G={AA,AB, BB}, the set of diploid genotypes. Now given two diploid
samples, the set of possible joint-genotypes consists of all combinations of
diploid genotypes, which is equivalent to the Cartesian product of G with
itself, i.e. G x G={(gn,gr):8n,.8T €T}

We assume the joint genotype of a given position can be mapped onto
the more biologically interpretable set of marginal genotypes according
to Table [ This can be done by assigning the joint genotype to the most

Reference ACTCCCGTCGGAACGAATGCCACG Joint Ger.u.)t‘ype
Genome Probabilities
ACTCCCGTCGGAACCAATGCC - - =
-CTCCCGTCGGAACCAATGCCACE
- - -CCCGTCGGAACCAATGCCACG
----- CGTCGGAACCAATGCCACG )
CATCGGAACCAATGCCACE PG, . =1)
Normal  771© GTCGGAACCAATGCCACG (o)
------------- CAATGCCACE  gn\or | AA| AB| BB
-------------------- CACC
an  122335566666660777778773 AA|0.01| 0,95 0.00

Allelic Counts 5 153335666666667777778777

AB | 0.00{ 0.04| 0.00
ACTCCCGTCGGAACCAATGCCACC BB
- -TCCCGTCGGAACCAATGCCACC
- --CCCGTCGGAACCAATGCCACL
GTCGGLACCAATGCCACG
------- CGGLACCAATGCCACG
--------- GCACCAATGCCACG
»»»»»»»»»»»»»» AATGCCACG

0.00| 0.00| 0.00

Tumour

112333445563668777788883
112333445566666777788888

ar
Allelic Counts  ;
dr

Germline
Somatic (AA,AB)  (BB,BB) (AB,AB)

Fig. 1. Hypothetical example of the JointSNVMix analysis process. Reads
are first aligned to the reference genome (green). Next the allelic counts,
which are the number of matches and depth of reads at each position are
tabulated. Allelic count information can then be used to identify germline
(blue) and somatic positions (red). At the bottom of the Figure, we show the
hypothetical probabilities of the nine joint genotypes based on the count data
for the somatic position (AA, AB).
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probable state, or marginalizing together the joint genotype probabilities for
a given state. As an example of marginalization, we compute P(Somatic)=
P((AA,AB))+P((AA,BB)), i.e. the sum of probabilities of a wild-type
genotype in the normal data and a variant genotype in the tumour data.

2.2 JointSNVMix models

JointSNVMix1 and JointSNVMix2 are generative probabilistic models that
describe the joint emission of the allelic count data observed at position i
in the normal and tumour samples. Figure [2] shows the graphical models
representing JointSNVMix1 and JointSNVMix2. A complete description of
the notation and model parameters is given in Table 2}

Table 1. The nine possible joint genotypes and their associated mappings
onto biologically interpretable marginal genotypes

gN\gT AA AB BB

AA Wild-type Somatic Somatic
AB LOH Germline LOH

BB Error® Error Germline

Wild-type [no change: P(AA,AA)], Somatic [wild-type normal and variant tumour:
P(AA,AB)+P(AA, BB)], Germline [variant normal and tumour: P(AB,AB)+P(BB, BB)]
and loss of heterozygosity [LOH-heterozygous normal and homozygous tumour:
P(AB,AA)+P(AB, BB)].

@We treat the joint genotypes (BB,AB) and (BB,AA) as errors since this would imply
that a homozygous variant mutates back to the reference base, which is a possible, but
unlikely event. It is more plausible that these cases are simply errors due to alignment
or base calling.

(a)

7 ~  Dirichlet(7|d)

We introduce a random variable G' as a Multinomial indicator vector
representing the joint genotype of the samples. More explicitly G'=
(Glaa.any Glan.apy - Ggp.pp)) Where G =1 if the joint genotype of

(gn-8T)
position i is (gy,g7), and G; av.ar) =0 otherwise. We assume the count data

from the two samples are jointly emitted from G' thus capturing correlations
between the variables, and allowing statistical strength to be borrowed across
the samples. This is the key insight that differentiates this model from running
an independent analysis of each sample and joining the inferred genotypes
post hoc.

Given the joint genotype of the sample, we model the normal and
tumour sample as being conditionally independent. For JointSNVMix1, the
conditional distribution for each sample is modelled as a three component
mixture of Binomial densities, where the densities correspond to the
genotypes AA, AB, BB. These conditional densities are the same as used by
SNVMix! model (Goya er all, 201d). For JointSNVMix2, the conditional
densities are the same as SNVMix2 (Goya et al., 2010), which allows for
the incorporation of base and mapping quality information. A complete
description of the model is available in the Supplementary Material.

2.3 Inference and parameter estimation

‘We use the expectation maximisation (EM) algorithm to perform maximum a
posteriori (MAP) estimation of the values of the model parameters and latent
variables. One could hand-set parameters of the model to intuitive values;
however, we expect that fitting the model will allow for sample-specific
adjustments to inter-experimental technical variability and inter-sample
variation from tumour—normal admixture (so called tumour cellularity) in the
tumour samples. A full derivation of the update equations for JointSNVMix 1
and JointSNVMix2 is given in the Supplementary Material.

(b)

L
ofc

i
o e

Jr € {1, di}

Jn € {1, di)

7 ~ Dirichlet(7|8)

G'|m
”’}\J|GZHN,QT) =1 py,dy

Paig|Qug, Ba:g

Multinomial (G| 7r)
Binomial (a' |l , BN:gn)

Beta(pia: g |0ta:g, Baig)

G'|m
i i

aN:jN‘G(gNygT) =Lun

zi
Nijn

i lat i
IN: N 1ONG N EN Gy

r |28
NN 1“N:N

Hazig|Qa.g, Ba:g

Multinomial (G| 7)
Bemoulli(aNVN [1Nign)

Bernoulli(z}Vz_lN |0.5)
f(q;v:JN ‘aj\f:jN ) Z;v:;w)

g(rf\l;gN ‘Zjl\r:jN)

Beta(piaig|Qaig, Baig)

Fig. 2. Probabilistic graphical model representing the (a) JointSNVMix1 and (b) JointSNVMix2 model. Shaded nodes represent observed values or fixed
values, while the values of unshaded nodes are learned using EM. Only the distributions for the normal are shown below, the tumour distributions are the
same. We have defined f(¢|a,z) =z[ga+(1 —¢)(1 —a)]+0.5(1 —z) and g(r|z) =zr+(1 —z)(1 —r). Description of all random variables is given in Table 2]
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We initialize training with user supplied parameter values. Local minima
are a potential pitfall when training with EM. To check the models sensitivity
to initial parameter values, we generated 100 sets of random parameters
and started training from these parameters. We observed that the trained
parameters consistently converge to the same values, suggesting local optima
are not a major problem for this model (Supplementary Figs S2 and S3).

Storing the posterior marginals generated in the E-step requires O(n)
memory, thus for a large dataset training may exhaust available memory. To
circumvent this problem, we subsample every n-th position with coverage
exceeding a specified threshold in both the tumour and normal. For the results
presented below, we subsampled every 100-th position with a coverage of
at least 10 reads. Lower values of n and hence larger subsample sizes will
lead to improved parameter estimates at the cost of using more memory and
CPU time.

2.4 Implementation and performance

The JointSNVMix software package is implemented using the Python
programming language with computationally intensive portions written in
Cython. The input is aligned sequence data in base space stored in the
SAM/BAM format w,) from a tumour—normal pair. The program
implements two main commands, train and classify. A typical analysis
consists of training to learn the model parameters. These can then be used
with the classify command. Doing both steps of the analysis using coding
space positions from a 30x genome takes ~6h on a four core Intel i7
processor running at 1.73 GHz with 8 GB memory.

2.5 Datasets

Synthetic data: we generated the synthetic data by sampling 10 sites from
the JointSNVMix1 model in Figure Zh. We used the following parameters:

fy, oy = (0.999,0.6,0.001)

nurmal\mmour AA AB BB
AA 10° 10% 102
AB 10% 10* 10%
BB 1 1 10*

7 is normalized so that the sum over all entries equals 1. The depths
dl‘;,,d} were sampled for a Poisson distribution with parameter A =10. The
synthetic data along with class labels is available in Supplementary Material.

We set parameters for the AB class in the vectors uy, 7 to 0.6, which
is slightly skewed towards the reference allele. We did this to ensure the
parameters would be different than the hand-set defaults used in the untrained
version of JointSNVMix1 and SNVMix|.

For the SNVMix1 and JointSNVMix1 models, we used a threshold

P(Somatic) > 0.5 to call mutations somatic in this experiment. We did not
benchmark SNVMix2 and JointSNVMix2 because our simulation technique
does not generate quality scores.
DLBCL: we analysed matched tumour/normal data fromm dZQ_le
(dbGAP study accession phs000235.v2.pl). Exome data for patients A and
B was captured using Agilent SureSelect, and subsequently sequenced on
the Illumina GA II platform and aligned with Burrows-Wheeler Aligner
(BWA). For patients C-M, the data were generated by whole genome shotgun
sequencing (WGSS) and was run on the Illumina Hiseq2000 platform and
aligned with BWA as described in [Morin e al] Q011

Ground truth data was predicted from the primary tumour genome and
RNA-Seq data with the SNVMix software package followed by manual
curation to remove artefacts. Support on both strands was required and
variants near gapped alignments disregarded. Two or more high-quality
bases matching SNV were required. Finally, putative variants were visually
inspected in IGV. Validation of the non-synonymous curated predictions by
targeted Sanger sequencing of the normal and tumour samples was performed
to establish the true somatic mutations. There were 312 unique positions
validated as somatic mutations across all patients in this study. Complete
details are available inm M).

In the analysis presented below, only coding space positions were
analysed. For SNVMix2 and JointSNVMix2, no pre-processing was
performed. For the other models, we removed bases with base or mapping
qualities <10. Summary statistics for the aligned data are included in the
Supplementary Material.

2.6 Alternative methods

In order to evaluate the effect of modelling the joint distribution of the tumour
and normal data, we compared the JointSNVMix1 and JointSNVMix2

Table 2. Parameters in the model are learned using the EM algorithm as discussed below, while hyper-parameters are fixed to the

value given

Parameter  Description Value
ev\er AA  AB BB
L . AA le5 le2 le2
) Pseudo counts in Dirichlet prior on & AB le2 163 162
BB lel lel le3
b4 Multinomial distribution over joint genotypes Estimated by EM (M-step)
G Genotype at position i Estimated by EM (E-step)
ai Number of bases matching the reference genome at position i in genome x € {N,T}  Observed (JointSNVMix1 only)
ai_:jx Indicator that base j, at position i matches reference in genome x € {N, 7'} Latent (JointSNVMix2 only)
Z)lc_:j, Indicator that base j, at position i is correctly aligned x € {N, T} Latent (JointSNVMix2 only)
dy, Depth of coverage at position 7 in genome x € {N, T} Observed
qi:_ i Probability that base call is correct in genome x € {N, T’} Observed (JointSNVMix2 only)
r;:jx Probability that alignment is correct in genome x € {N, T} Observed (JointSNVMix2 only)
Mgy Parameter of Binomial distribution for genotype g, in genome x € {N, T} Estimated by EM (M-step)
AA AB BB
g, « parameter in Beta prior distribution on fiy.g, Normal 1000 500 2
Tumour 1000 500 2
AA AB BB
Brgy B parameter in Beta prior distribution on fty.g, Normal 2 500 1000

Tumour 2 500 1000
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models to their independent analogues, SNVMix1 and SNVMix2. We re-
implemented the SNVMix models in order to compare classifier performance
without introducing variation due to implementation. We also considered
independent and joint methods for classification which use Fisher’s exact
test. We include these two methods to verify the performance difference we
observe in the SNVMix models are due to joint analysis.

Independent Fisher: this method uses a right-tailed Fisher’s exact test in
order to test the null hypothesis that the number of variant bases observed
is due to random error. If the null hypothesis is not rejected at P-value of
0.05, the site is assigned the genotype AA. Otherwise, a site is assigned a
genotype AB if the frequency of the B-allele is between 0.2 and 0.8, and a
genotype of BB if this frequency is >0.8.

Joint Fisher: this method first applies the Fisher method to call the genotypes
in normal and tumour separately. Putative somatic sites are identified and a
two-tailed Fisher’s exact test is run to test the null hypothesis that the normal
and tumour count data do not differ significantly. If the null hypothesis is
not rejected at P-value of 0.05, the putative somatic site is reassigned the
reference genotype (AA,AA).

SNVMixI: we re-implemented the SNVMix1 model used in the published
SNVMix software WM) To assign joint genotype probabilities,
we take the genotype probabilities from the normal and tumour samples and
multiply them to obtain the joint genotype probabilities.

SNVMix2: we re-implemented the SNVMix2 model used in the published
SNVMix software m, m). Joint genotype probabilities are
derived as for SNVMix1.

2.7 Performance metrics

Since exhaustive validation of both somatic and non-somatic events was not
available for the datasets used, we measured the concordance of the somatic
predictions with databases known to be enriched for somatic or germline
mutations. In theory, classifiers that predict more true somatic mutations
should show higher concordance with the database of somatic mutations
and lower concordance with the germline database.

To generate a database of somatic mutations, we took the complete set
of 312 unique somatic mutations validated across the cases and joined
them with COSMIC v54 database ,m)- ‘We used the SNP

edictions from the 2010/11/23 release of the 1000 genomes projects
m, m), with the positions found in COSMIC v54 removed,
as the database of likely germline variants.

For the SNVMix and JointSNVMix methods, which assign probabilities
to their predictions, we plot curves based on the rank ordering of somatic
predictions. We do this by computing concordance as the probability
threshold for classification is lowered. For the Fisher methods, which do not
assign scores to their predictions, we plot a point in space for the complete
set of predictions.

To estimate the recall rate of the JointSNVMix models, we computed
how many of the validated mutations for a case were found by the models

Table 3. Results from synthetic data

using a threshold of P(Somatic)>0.5. There were 307 validated positions
across the 12 cases used for this analysis. This number differs from the 312
unique positions because some mutations are found across multiples cases,
and some cases from the original study were not included in our analysis.

‘We note that copy number variation (CNV) due to segmental aneuploides
and abnormal karyotypes could affect predictions. To assess the effect
of CNV on prediction accuracy, we repeated the recall experiment using
positions found in regions of predicted CNVs. CNVs were predicted
(Supplementary Fig. S4) using an in-house tool, HMMCopy, available from
http://compbio.beere.ca. This tool requires whole genome data, so patients
A and B had to be excluded from this analysis. When we excluded these
cases there were 187 validated somatic positions, 44 (23.5%) of which were
found in regions of CNV.

3 RESULTS

3.1 Joint modelling shows increased ability to detect
shared signals on simulated data

We summarize the results from our synthetic experiment in Table[3
The F-measure and Matthews correlation coefficient (MCC) for
the trained JointSNVMix1 model is the highest among all models,
reflecting a good trade-off between sensitivity and specificity. The
trained SNVMix1 model had the most true positives of all models;
however, the F-measure and MCC were lower than JointSNVMix 1.
This is due to the high number of false positives (823) associated
with the method, the bulk of which are false positive germline events
(743).

There is an obvious bias associated with simulating from the
JointSNVMix1 model to generate the synthetic data. We only present
this data to emphasize the relatively high false positive rate that can
be expected from post hoc methods, which treat the data as being
independently sampled. When comparing number of false positives
for JointSNVMix1 and SNVMix 1, we observed an 80-fold reduction
with the joint modelling approach. This trend is supported by the
Fisher models where we see a 2-fold reduction in false positives
when using the joint approach.

3.2 Joint modelling increases enrichment of true
somatics in high ranking predictions

In Figure[3 we show the aggregated concordance analysis results for
the 12 DLBCL cases. (Supplementary Fig. S1 shows concordance
results for each case separately.) The circles at the start of the
lines for the JointSNVMix and SNVMix models represents the
set of predictions for which P(Somatic)=1. The JointSNVMix
models show higher somatic concordance (left) in the top mutations

Caller TP FP TN FN F-meas MCC FP Germlines FP Wild-types
JointSNVMix!1 (Trained) 140 13 999788 59 0.795 0.802 8 2
JointSNVMix|1 153 50 999751 46 0.761 0.761 42 0
SNVMixl1 (Trained) 190 823 998978 9 0.314 0.423 743 70
Joint Fisher 159 1155 998646 40 0.21 0.311 1109 0
SNVMix1 178 1653 998148 21 0.175 0.295 1632 0
Independent Fisher 159 2538 997263 40 0.11 0.217 2464 0

We report the number of true positives (TP), false positives (FP), true negatives (TN), false negatives (FN), F-measure (F-meas), Matthews correlation coefficients (MCC), false
positives which are germline (FP Germlines), and false positives which are wild-type (FP Wild-types). The best results for each category are shown in bold.
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Concordance Analysis

Somatic Germline
0.07F 1
(2:50,0.07) 0.6} P
O-OG‘JI.\ i (108.03, 0.60)
2.33, 0.06 L i
T ) 05 (14.54, 0.45)
0.05F | - -t
0] I\
o \ 0.4f :
c  0.04f | 1
© ! (15,79, 0.21)
© 0.3} g
S 003 | 1 (2.50, 0.18) :
O N (14.54, 0.02) /
c W, 1579, 0.02) 0.2 i 1
S o002f N - . e ™~0.35 019
O S5—(20.35, 0.01) e —— e F =
0.01f R _ 0.1f| s
= D i (103-0319;-:30) (2.33,0.17)
00873 20.0 40.0 60.0 80.0 100.0 %9% 20.0 40.0 60.0 80.0 100.0

Number Of Somatic Predictions (1000's)

— JointSNVMix1 (Trained) —
— JointSNVMix2 (Trained)

SNVMix1 (Trained) *
SNVMix2 (Trained) *

Independent Fisher
Joint Fisher

Fig. 3. Concordance analysis of the 12 DLBCL datasets. The Somatic column represents concordance with the merged COSMIC and ground truth set. The
germline column represents concordance with the 1000 Genomes positions with the cosmic positions removed. The horizontal axis shows the number of
somatic predictions made and the vertical axes shows the fraction of those predictions found to be in the respective set. Lines are drawn by computing
concordance as the threshold for classification is lowered. Lines start always from the left side because multiple positions may have P(Somatic)=1. Circles
at the start of lines indicate this positions, these points are also labelled with the number of somatic predictions (in 1000’s) and concordance.

predicted, while showing lower germline concordance (right) than
their SNVMix analogues. This suggests that by distinguishing and
removing false positive germline events, JointSNVMix enriches the
top ranked somatic predictions for true somatic mutations.

Comparing the Fisher methods, we see that the joint model
significantly improves performance. The independent Fisher method
produces an unrealistically large number of predictions; however,
the joint Fisher approach seems much better. A major limitation of
the Fisher methods is the lack of ranking information. As a result,
we can only compare these methods to JointSNVMix and SNVMix
models at a single point. At this single point, the Fisher methods have
similar somatic concordance, but higher germline concordance. This
suggests that the sensitivity of the Fisher methods is similar to the
SNVMix family of models, but the specificity is lower.

JointSNVMix2 has a recall rate of 0.935 (287/307) on the
validated mutations, which is higher than JointSNVMix1’s rate of
0.915 (281/307). JointSNVMix2 shows similar or higher somatic
and germline concordance than JointSNVMix 1 model. This suggests
that JointSNVMix2 is erring on the side of recall versus specificity
when compared with JointSNVMix 1, though the performance is not
dramatically different. One benefit of the JointSNVMix2 model as
previously discussed in ), is that it frees the user
from setting arbitrary thresholds on base and mapping quality.

The recall rates for both JointSNVMix1 and 2 was 0.864 (38/44)
in regions of CNV, while in copy neutral regions recall rates were
0.916 (131/143) and 0.923 (132/143). This suggests that CNV
slightly degrades the performance of both methods, although neither
method showed statistically worse performance (Fisher’s exact test,
P=0.3787, P=0.2383, respectively.)

In total, there were 2496 somatic variants called by
JointSNVMix2 at the highest stringency (P=1) of which 559
were non-synonymous variants not present in 1000 genomes
polymorphism database. As discussed earlier, mﬁ M)
used stringent criteria, manual curation and validation to establish
the 307 true mutations. We did not validate the non-intersecting

predictions in this contribution, leaving the possibility of false
positive events due to technical artefacts. We suggest a robust
solution to mitigate against technical artefacts in Section 4.

4 DISCUSSION

In this article, we examined the problem of simultaneous analysis
of tumour—normal pair NGS data for the purpose of identifying
somatic point mutations. We developed a probabilistic framework
called JointSNVMix to allow us to benchmark a model that
can borrow statistical strength between samples against standard
independent analysis. We showed that joint modelling of genotypes
confers an increased specificity over simpler or independent analysis
(Section B2). Interestingly, the frequentist statistics-based method,
‘joint Fisher’ method, which considers both datasets simultaneously
shows an increased specificity over its ‘independent’ analogue, albeit
considerably lower than what was achieved for JointSNVMix.

4.1 Limitations and extensions

Data preprocessing: in our study, we assume that the input data
is aligned correctly and focus specifically on the problem of
identifying somatic mutations from allelic counts extracted from
perfectly aligned data. The scope of this study is thus restricted
to examining the effects of model-based classifiers for identifying
somatic mutations from count-based data. The alignment and
pre-processing steps leading to the generation of the count data
are expected to have a dramatic effect on the quality of the
classifiers we considered. The simple approach we used of filtering
(JointSNVMix1) or modelling (JointSNVMix2) mapping and base
qualities is likely suboptimal since they both do not consider
technical artefacts such as strand bias. However, all classifiers
are presented with the same data, and all will likely benefit to
the same degree from improved pre-processing. As our software
makes use of BAM files as inputs, it is agnostic to any upstream
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processing in the generation of these files, and as such should be
compatible with more sophisticated pre-processing strategies and
efforts such as Samtools and GATK will likely continually improve
this important aspect of analysis. In our experience, post-processin
JointSNVMix predictions with mutationSeq (ﬁﬁ mg)
removes the majority of technical artefacts.

Model extensions: the JointSNVMix models make several
simplifying assumptions that may negatively affect performance.
In future work, it would be interesting to extend the framework
presented here to model tumour-normal admixture, aneuploidy,
CNV and nucleotide identity. We note in Section B2 that although
~25% of mutations fell in regions of CNV, sensitivity was not
significantly affected when copy neutral mutations and mutations
in regions of CNV were compared. The effect of substantially
altered karyotypes (typically exhibited by epithelial malignancies)
on the ability to detect somatic mutations remains an open
question. However, we expect that explicit modelling of the
genomic complexities of cancer such as CNVs and subclonal
populations would lead to enhanced interpretability of somatic
mutation prediction and enhanced performance. In addition, the
iid nature of the model easily allows for location-specific prior
knowledge of germline polymorphisms to be incorporated into the
joint genotype prior. As population-level databases mature, this
extension to the model should increase the specificity of somatic
mutation predictions.

5 CONCLUSIONS

In this article, we formulated the joint genotype problem for somatic
mutation discovery from a tumour—-normal pair of NGS datasets.
We have developed a novel statistical model JointSNVMix, which
explicitly models the process that jointly generates a pair of
samples. The joint modelling approach employed JointSNVMix
allows us to reduce the number of germline events falsely predicted
to be somatic. This increased specificity comes with little to no
decrease in sensitivity.

Additionally, we have provided a complete software package for
detecting somatic mutations in paired sequence data. This package
includes not only the JointSNVMix1/2 classifiers, but the other
four methods presented in the article. The Python implementation
of our software is available under an open-source license from
http://compbio.bcere.ca.
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