Fred Hutch Cancer Center CANCER GENOMICS Lecture 3: Probabilistic Methods for Profiling Copy **Number Alterations**

GENOME 541 Spring 2023 May 16, 2023

Gavin Ha, Ph.D.

Public Health Sciences Division Human Biology Division @GavinHa
gha@fredhutch.org
https://github.com/GavinHaLab
GavinHaLab.org

Outline: Probabilistic Methods for Mutation Detection

1.Detecting Copy Number Alterations in Cancer Genomes

- Predicting copy number features from sequence data
- Copy number analysis workflow
- Data normalization

2.Continuous Hidden Markov Model (HMM)

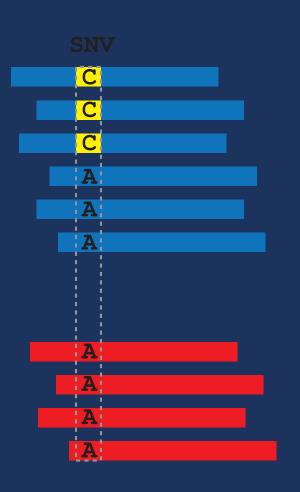
- Graphical model representation
- Components of a continuous HMM
- Inference & parameter estimation using expectation-maximization (EM)

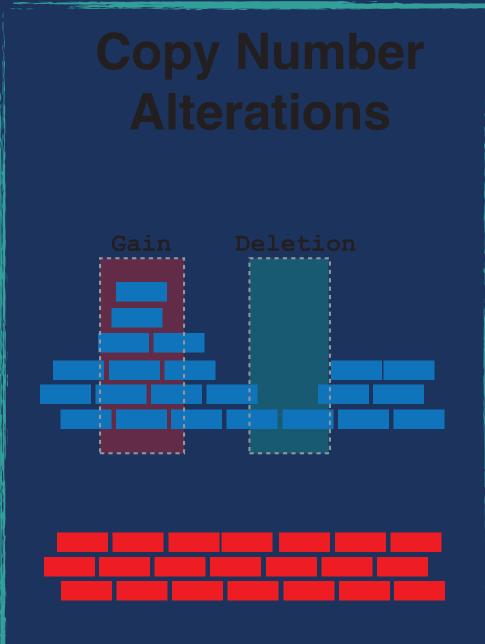
3.Copy Number Profiling using a Hidden Markov Model

- Probabilistic model for copy number analysis
- Predicting copy number segments using the Viterbi algorithm

2. Detecting Mutations in Cancer Genomes

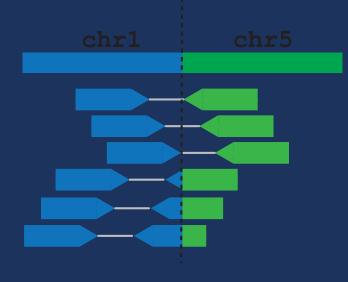
Mutations (SNV, INDEL)

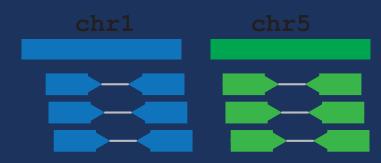




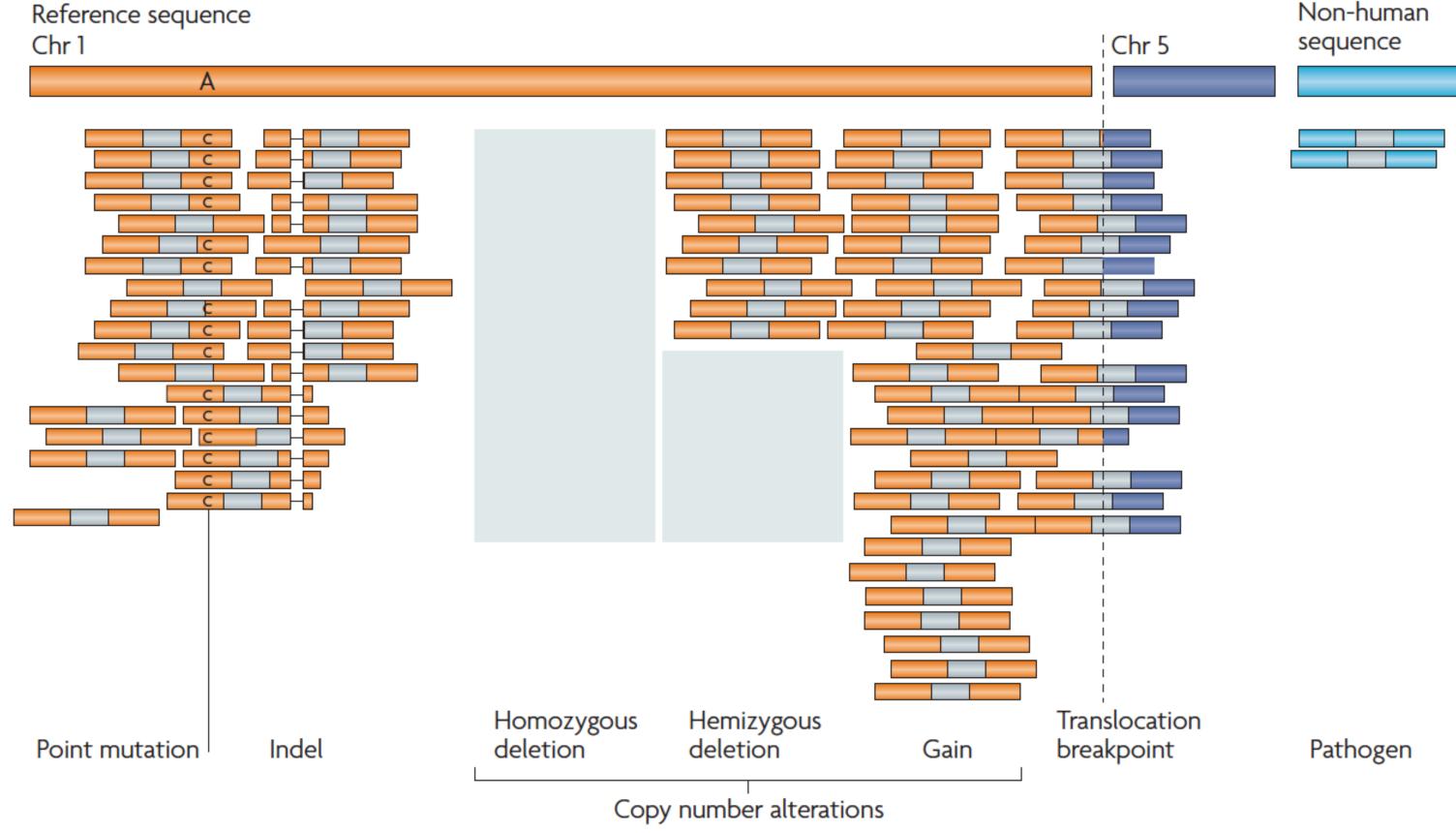
Structural Variants

Rearrangement





Predicting genomic alterations from sequence data

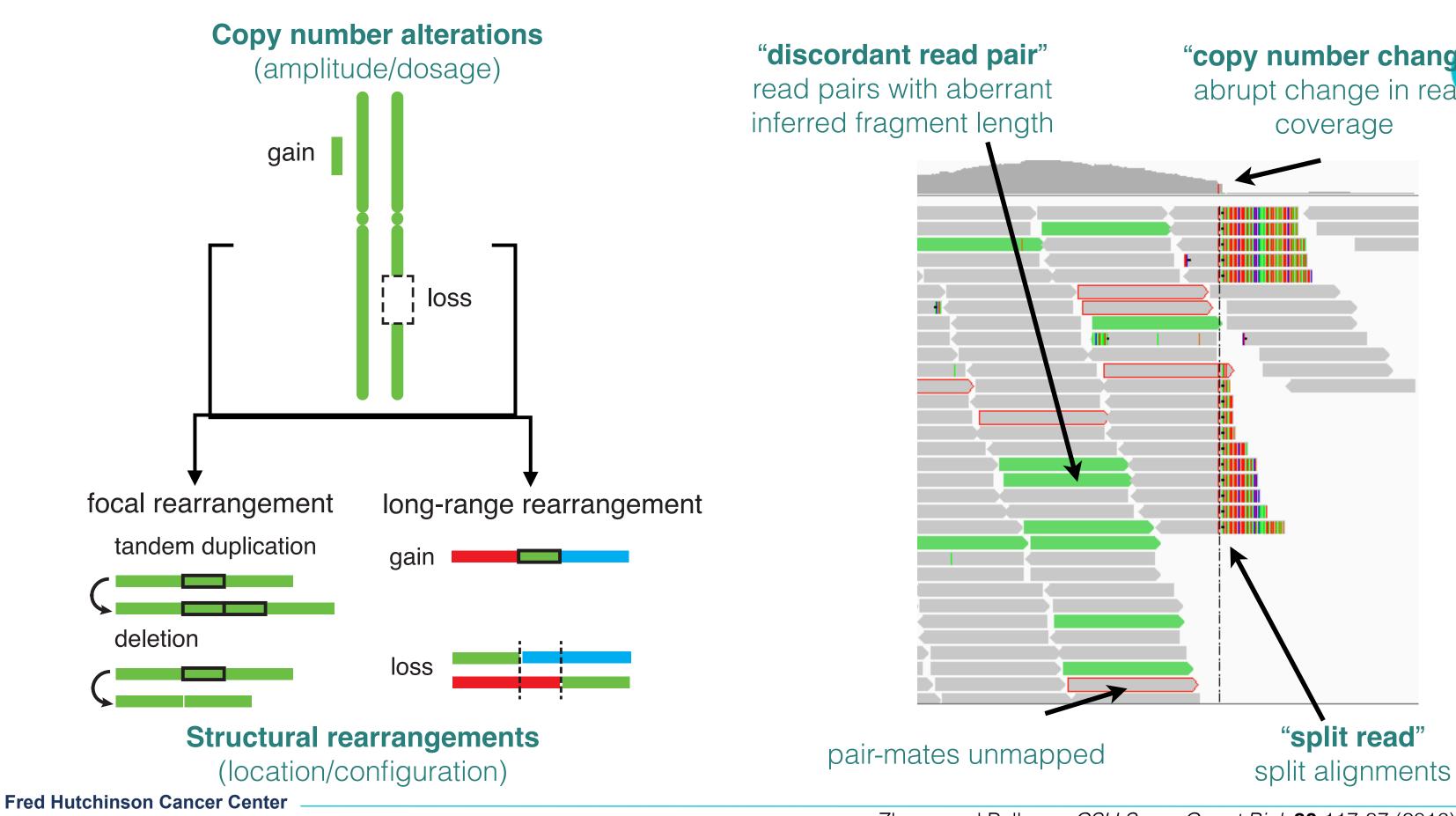


Fred Hutchinson Cancer Center

Meyerson, Gabriel & Getz. Nature Review Genetics 11:685-96 (2010)

Non-human

Predicting genomic alterations from sequence data

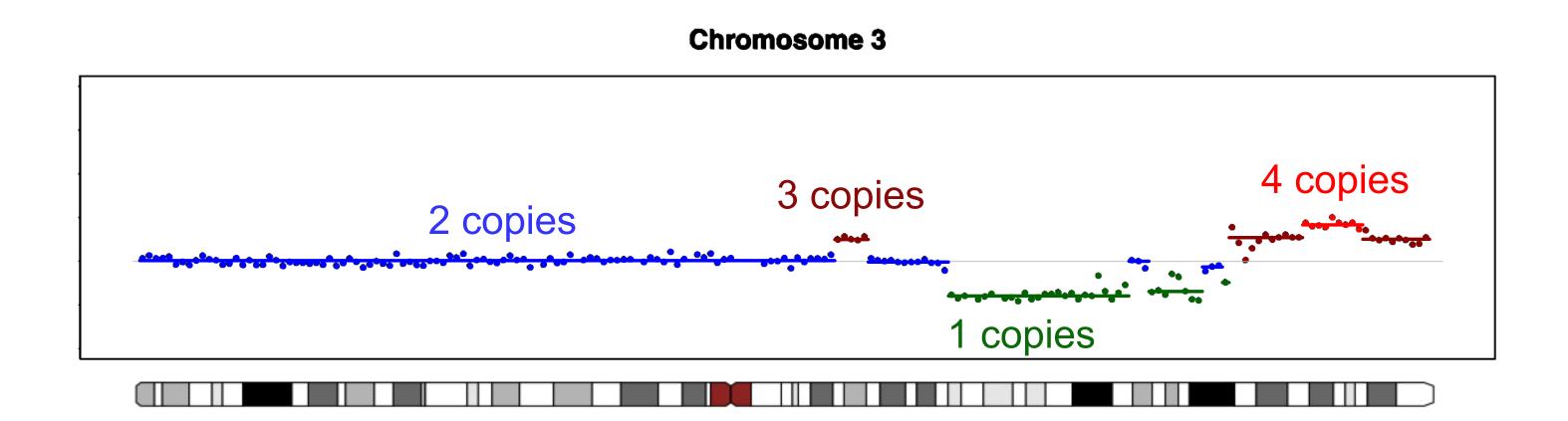


Zhang and Pellman. CSH Symp Quant Biol. 80:117-37 (2016)

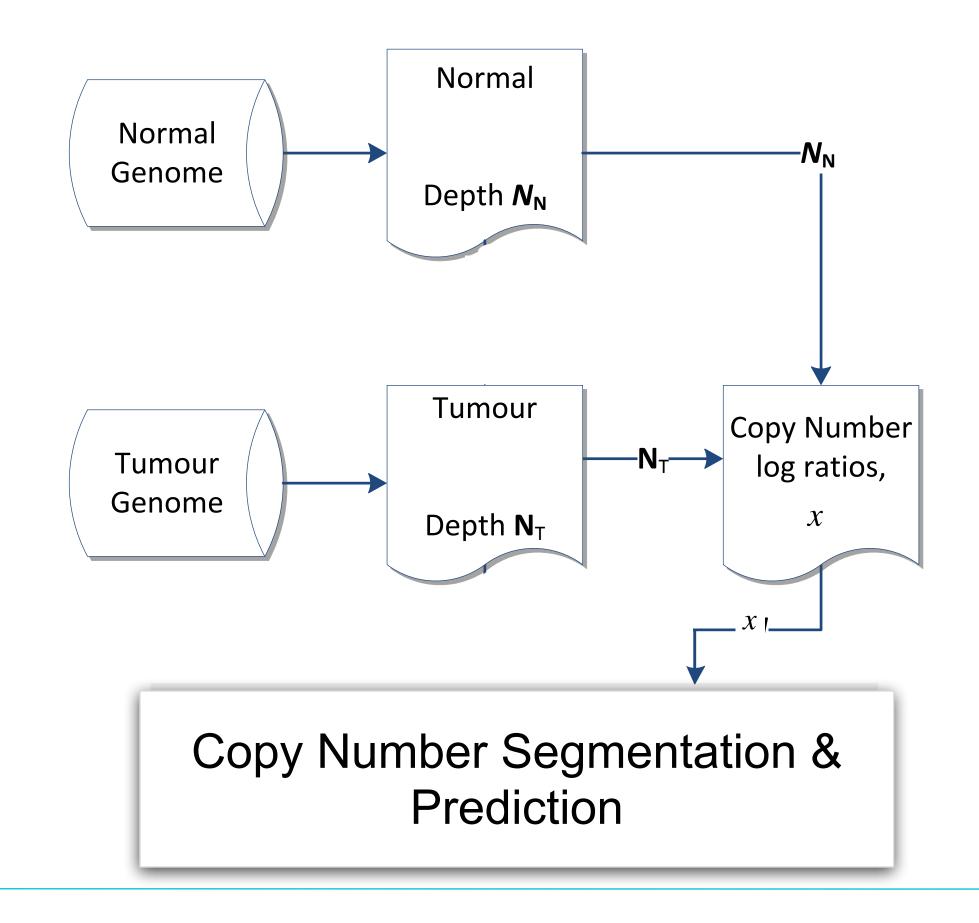
"copy number change" abrupt change in read

Tumor DNA Copy Number Analysis Strategy

- 1. Using sequencing read coverage as a measure for DNA copy number
- 2. Identifying segments of coverage changes
- 3. Predicting the number of copies for each segment

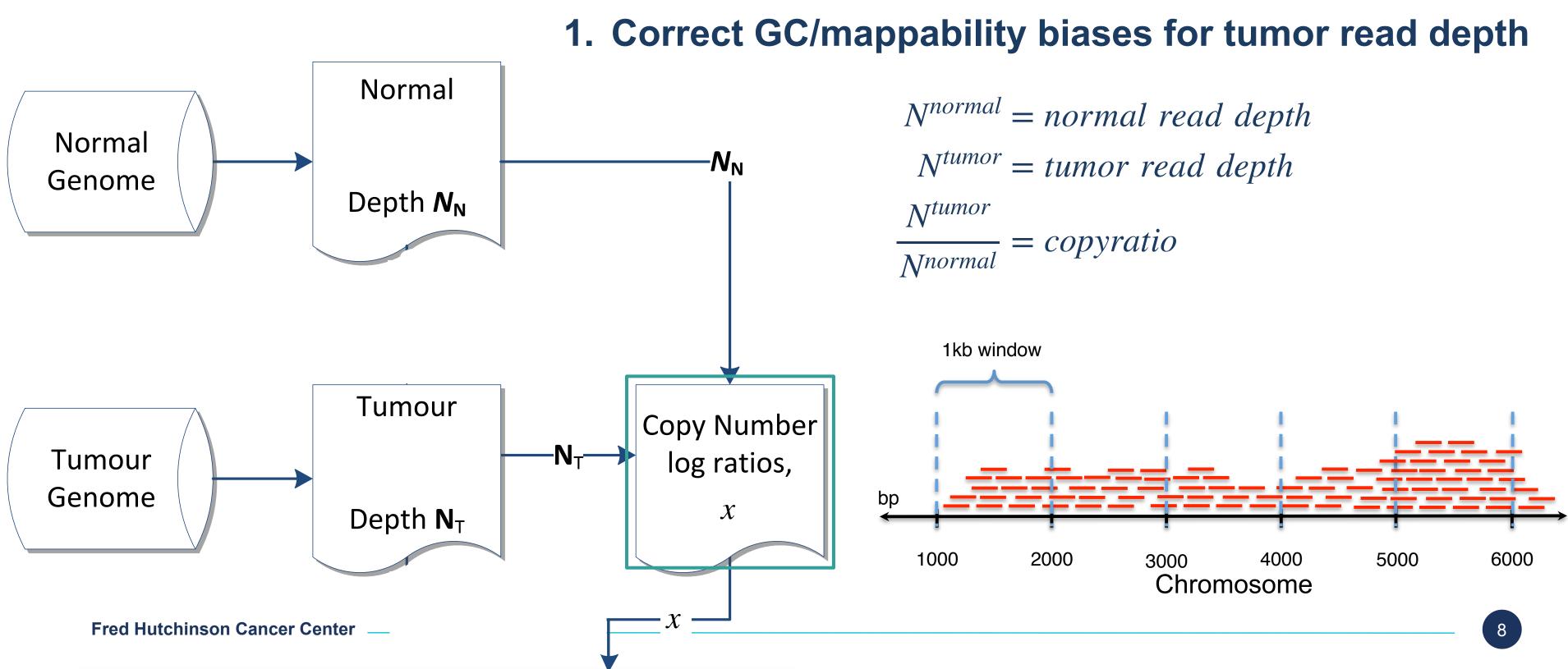


Cancer Genome Copy Number Analysis Workflow

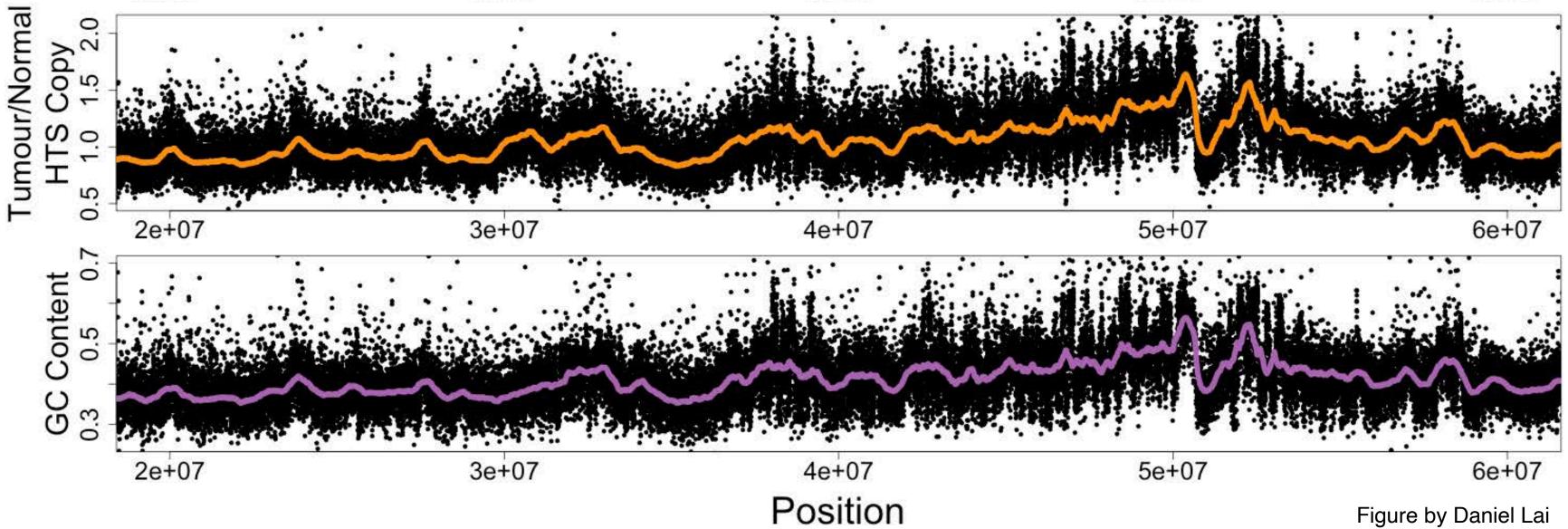


Fred Hutchinson Cancer Center

Copy Number Analysis Workflow: Normalization



Copy Number Analysis Workflow: GC content bias

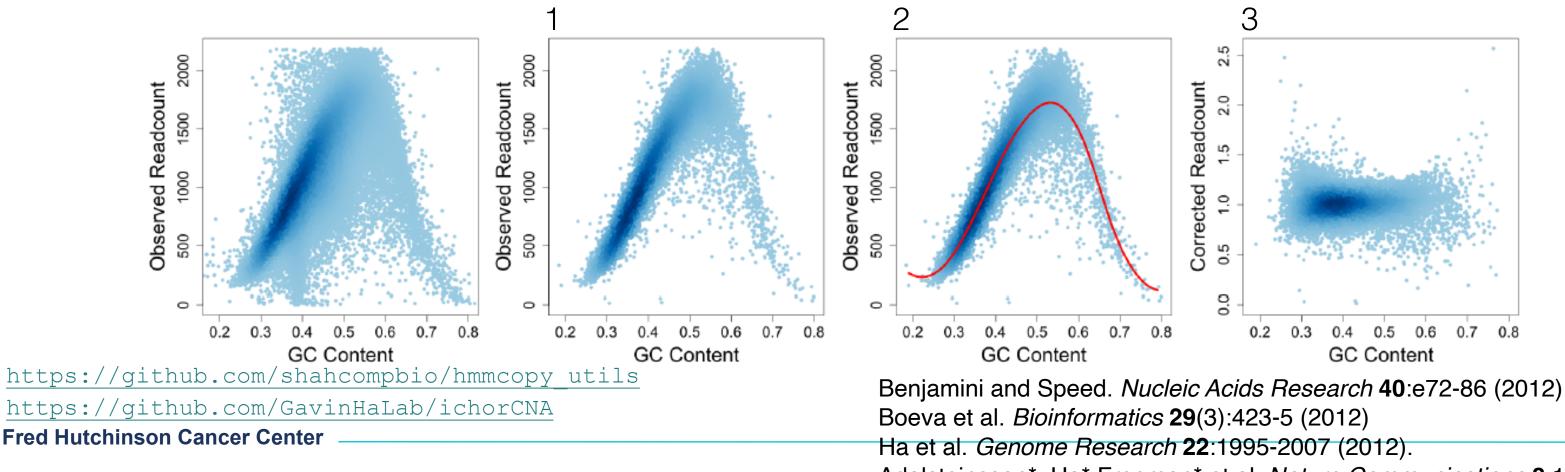


Fred Hutchinson Cancer Center

Benjamini and Speed. Nucleic Acids Research 40:e72-86 (2012) Boeva et al. *Bioinformatics* **29**(3):423-5 (2012) Ha et al. Genome Research 22:1995-2007 (2012). Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017)

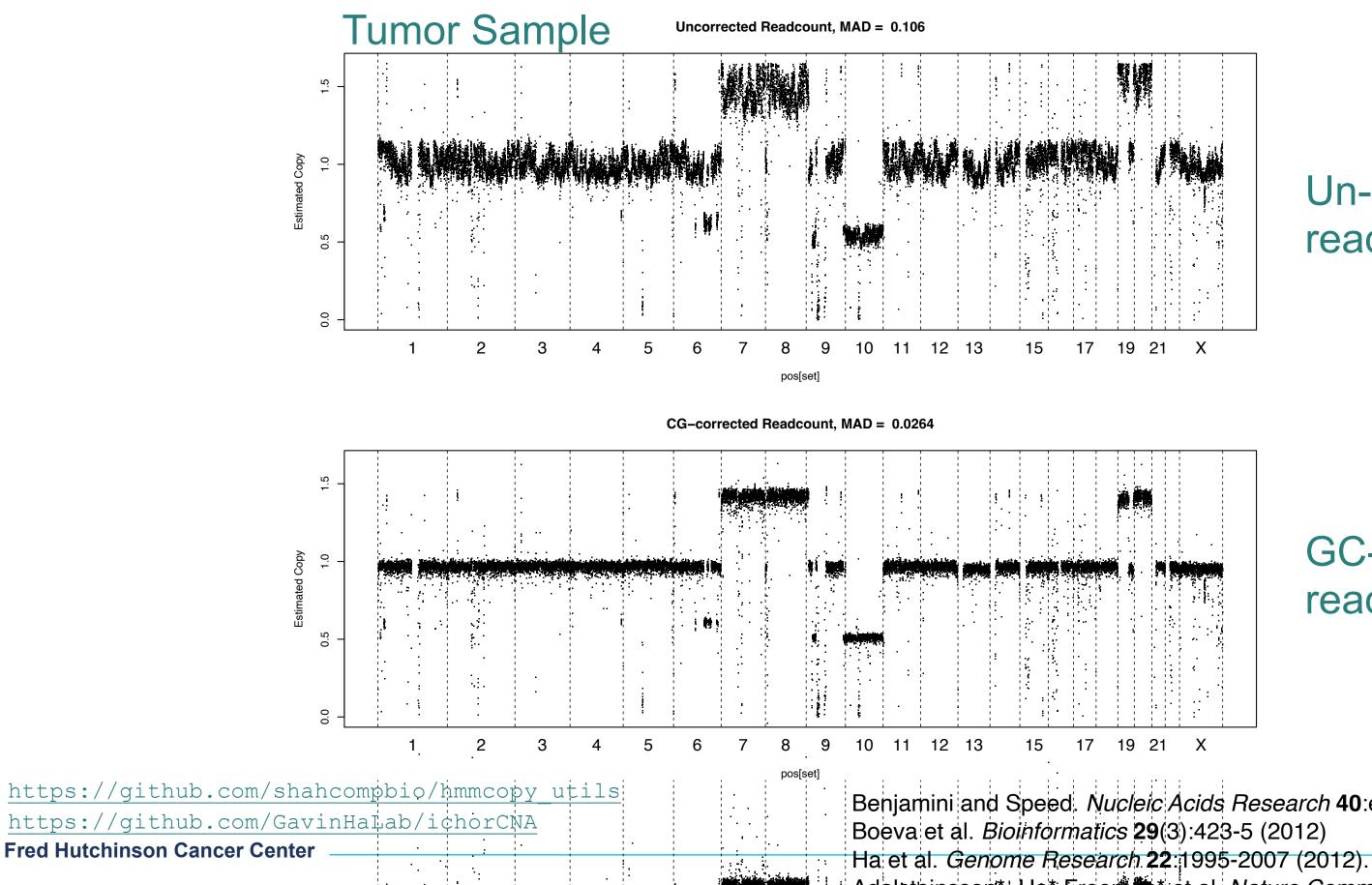
Copy Number Analysis Workflow: GC correction (1)

- 1. Randomly select 50k bins and filter outliers (bottom & top 1%)
- 2. Fit loess() curve
 - local nonlinear regression
 - smoothing parameter (bandwidth): amount of local data to fit
- observed read count (blue dot) 3. *corrected read count* = expected read count (red line)
 - relative differences between observed and predicted read counts



Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017)

Copy Number Analysis Workflow: GC correction (2)

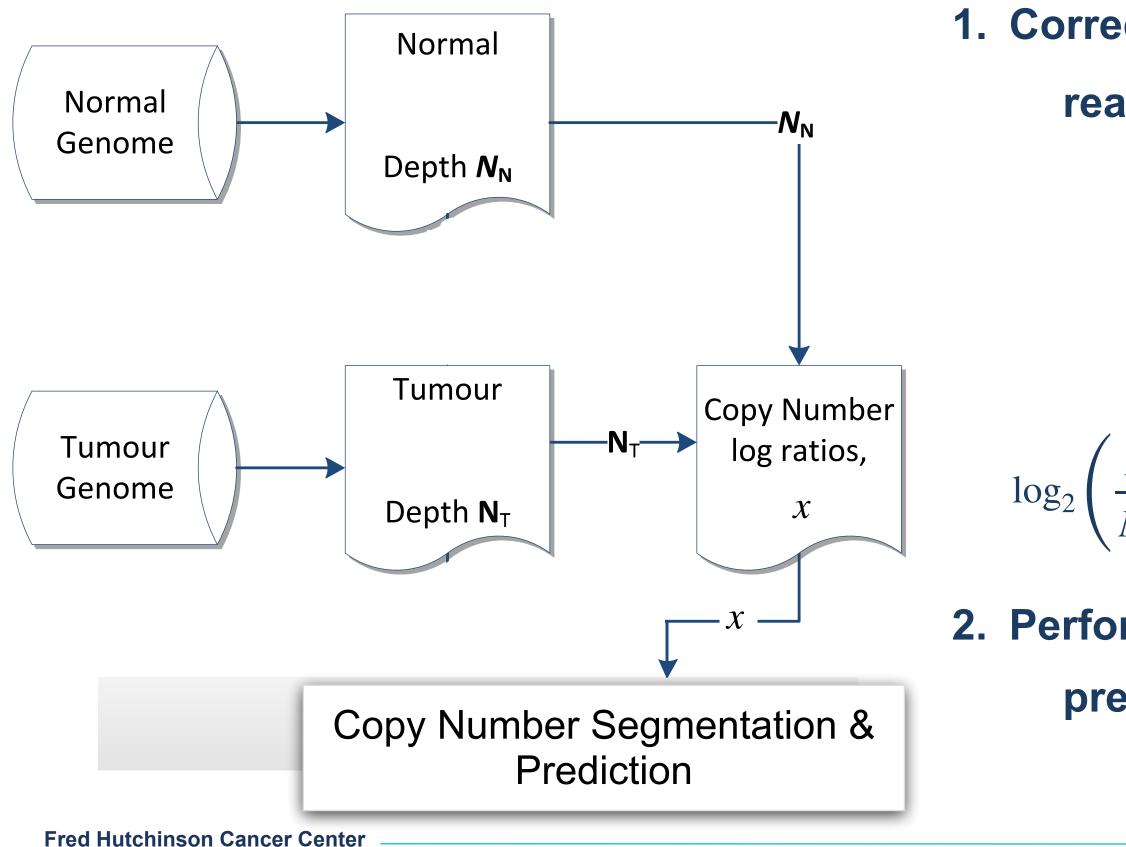


Un-corrected read counts

GC-corrected read counts

Benjamini and Speed. Nucleic Acids Research 40:e72-86 (2012) Adalsteinsson*, Ha* Freer at et al. Nature Communications 8:1324 (2017)

Copy Number Analysis Workflow: Normalization



1. Correct GC/mappability biases for tumor read depth

 $N^{normal} = normal \ read \ depth$ $N^{tumor} = tumor \ read \ depth$ $\hat{N}^{normal} = corrected \ normal \ read \ depth$ $\hat{N}^{tumor} = corrected \ tumor \ read \ depth$ $\frac{\hat{N}^{tumor}}{\hat{N}^{normal}} = corrected \ log \ ratio$

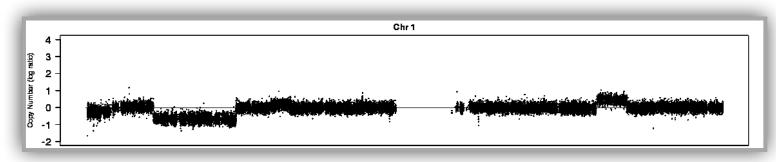
2. Perform segmentation and copy number prediction

Input Sequencing Data for Copy Number Analysis

Input Data After Normalization

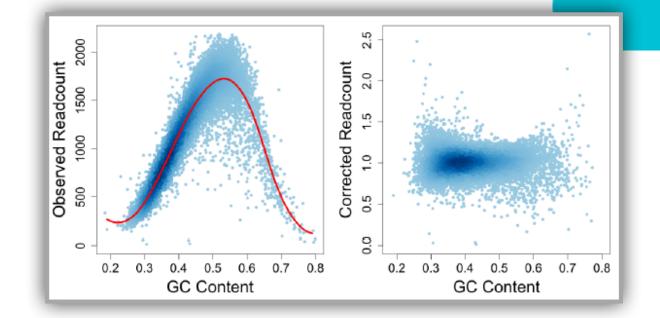
- GC-content bias correction applied to separately for
 - tumor sample reads $N_{1:T}^{Tumor}$
 - normal sample reads $N_{1 \cdot T}^{Normal}$
- Normalize tumor corrected read counts \hat{N}_{i}^{Tumor} with normal corrected read counts \hat{N}_{i}^{Normal} to obtain the log ratio for bin $t \in \{1, ..., T\}$

$$x_t = \log_2\left(\frac{\hat{N}_t^{Tumor}}{\hat{N}_t^{Normal}}\right)$$

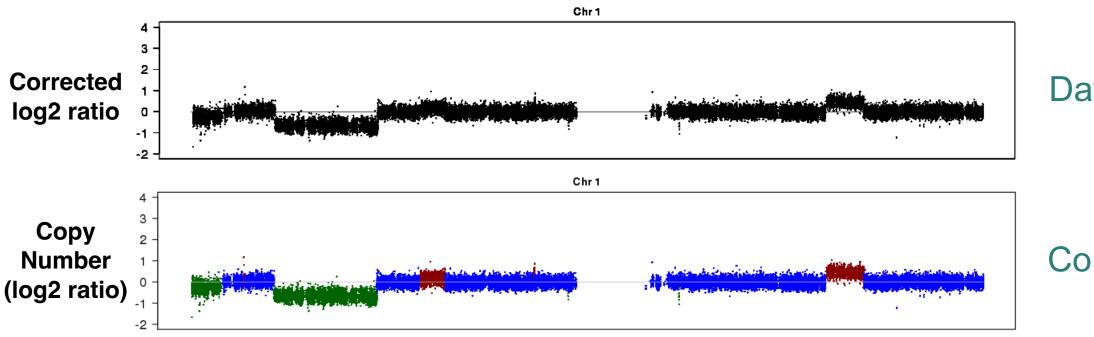


Benjamini and Speed. Nucleic Acids Research 40:e72-86 (2012) Boeva et al. *Bioinformatics* **29**(3):423-5 (2012) Ha et al. Genome Research 22:1995-2007 (2012). Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017)

Fred Hutchinson Cancer Center



Copy Number Segmentation and Prediction



- What are the genomic segments of copy number alterations?
- What is the copy number value for each segment?
- How do we account for variability/noise in the data?

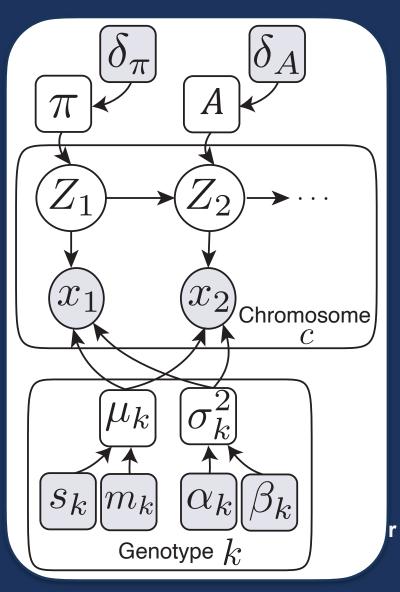
Continuous hidden Markov model (HMM)

Data normalization

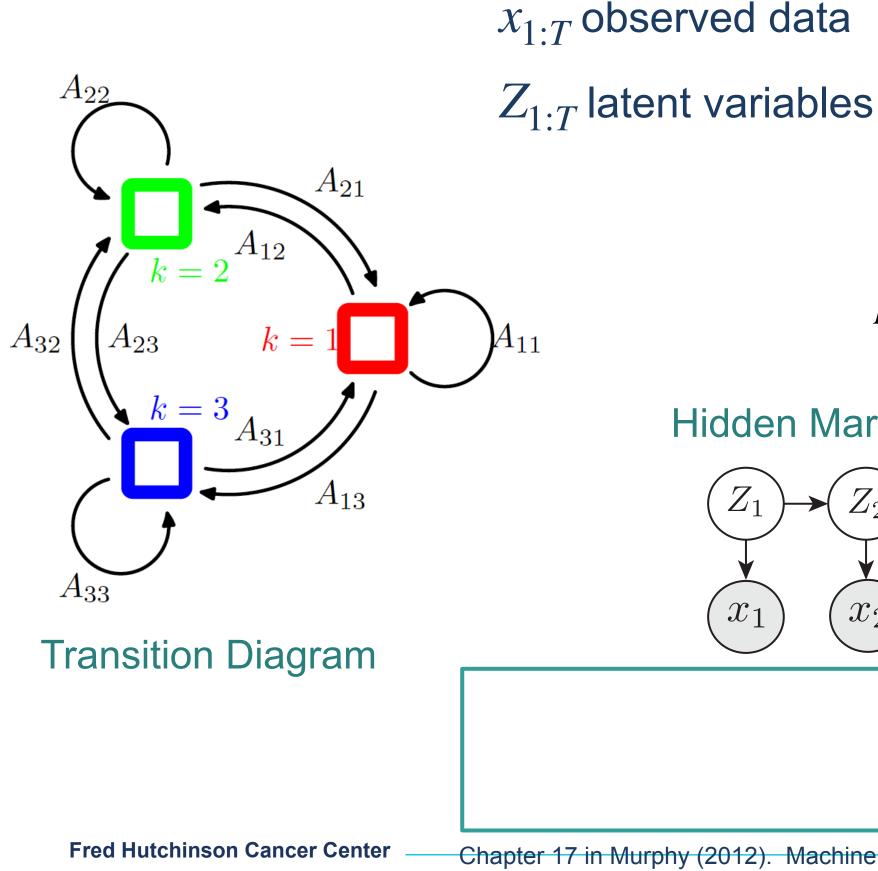
Copy Number Segmentation

2. Continuous hidden Markov model

- Hidden Markov Models vs Mixture Models
- Components of a Continuous HMM
- Inference and Parameter Learning using EM
- References:
 - **HMMcopy** Ha et al. *Genome Research* **22**:1995-2007 (2012).
 - ichorCNA Adalsteinsson*, Ha* Freeman* et al. *Nature Communications* 8:1324 (2017).
 - **TitanCNA** Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. *Genome Research* **24**:1881-1893 (2014).
 - Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
 - Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

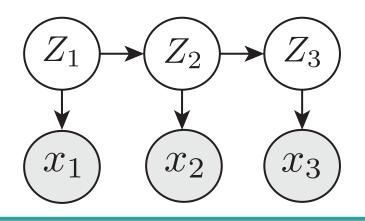


Probabilistic Graphical Model for HMMs



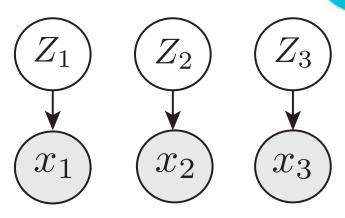
 $p(x_{1:3}, Z_{1:3}) = p(Z_{1:3})p(x_{1:3} | Z_{1:3})$ p(x, Z) = p(Z)p(x | Z) $= \left[\prod_{t=1}^{3} p(Z_t)\right] \left[\prod_{t=1}^{3} p(x_t | Z_t)\right]$

Hidden Markov Model



Chapter 17 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press Chapter 13 in Bishop (2006). Pattern Recognition and Machine Learning. Springer

Mixture Model

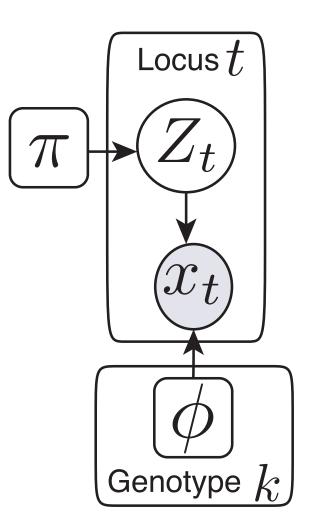


- 1. Markov Property $Z_3 \perp \!\!\!\perp Z_1 \mid Z_2$
- 2. Conditional independence of observations $x_3 \perp x_{1\cdot 2} \mid Z_3$

From Mixture Models to Hidden Markov Models

Mixture model for iid data is a special case of the HMM $p(x_{1 \cdot T}, Z_{1 \cdot T}) = p(Z_{1 \cdot T})p(x_{1 \cdot T} | Z_{1 \cdot T})$

Mixture Model



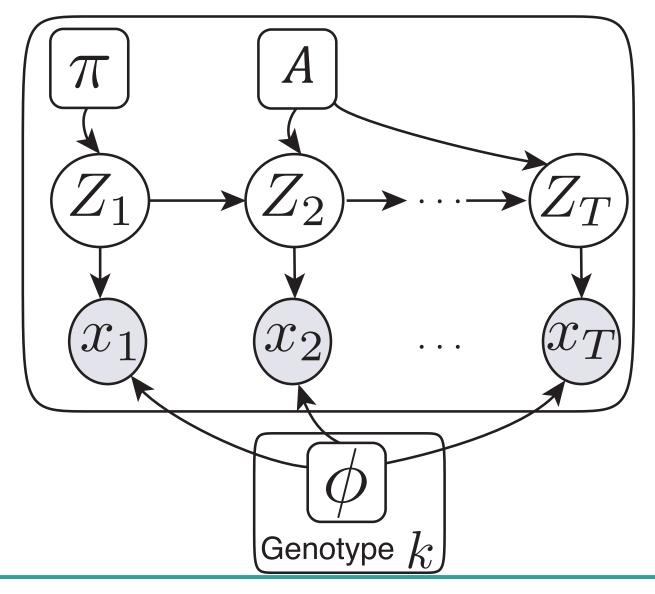
Joint Probability Distribution (Data likelihood) $x_{1 \cdot T}$ observed data $Z_{1:T}$ latent variables π mixture weights

 ϕ observation parameters

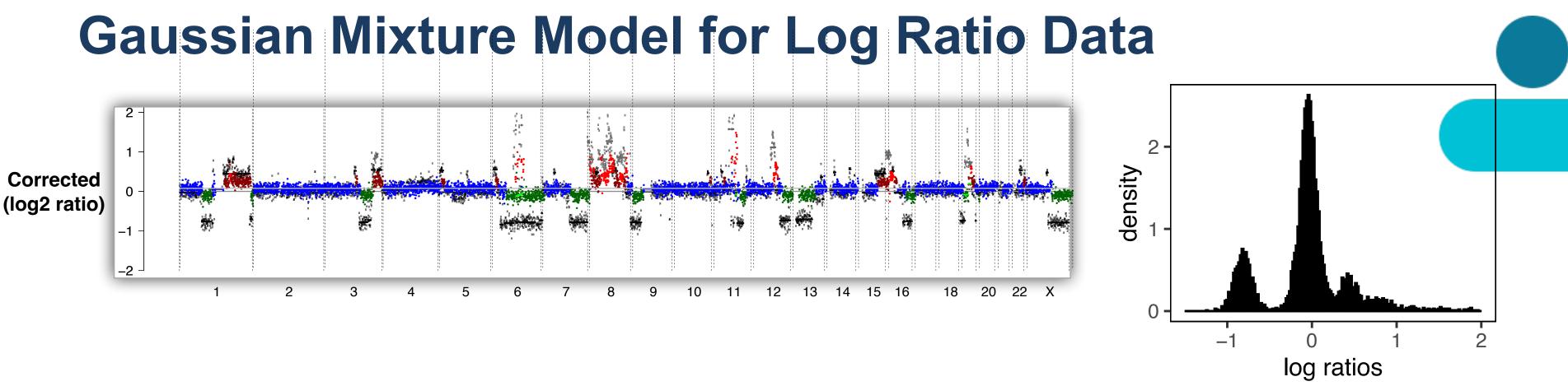
$$p(x_{1:T}, Z_{1:T} | \boldsymbol{\theta}) = \left[\prod_{t=1}^{T} p(Z_t | \boldsymbol{\pi}) \right] \prod_{t=1}^{T} p(x_t | Z_t, \boldsymbol{\phi})$$

Fred Hutchinson Cancer Center $\boldsymbol{\theta} = \{\boldsymbol{\pi}, \boldsymbol{\phi}\}$

Hidden Markov Model



 $\theta = \langle \pi, \phi, A \rangle$

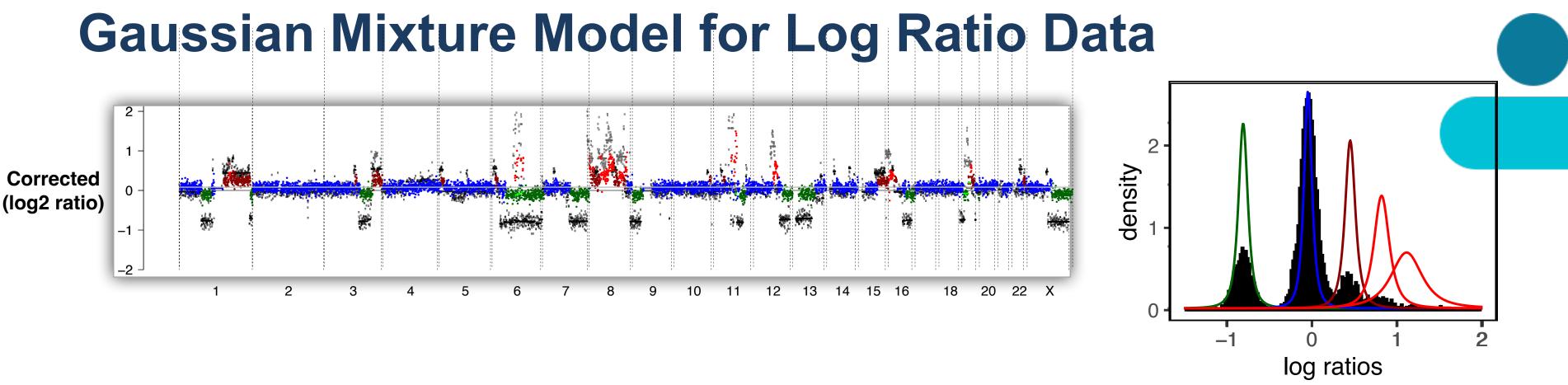


The Gaussian Distribution

Let X be a continuous measurement with mean μ and variance σ^2 , then X has a Gaussian distribution, $X \sim \mathcal{N}(\mu, \sigma^2)$ or $p(X = x) = \mathcal{N}(x \mid \mu, \sigma^2)$ where

$$\mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Fred Hutchinson Cancer Center



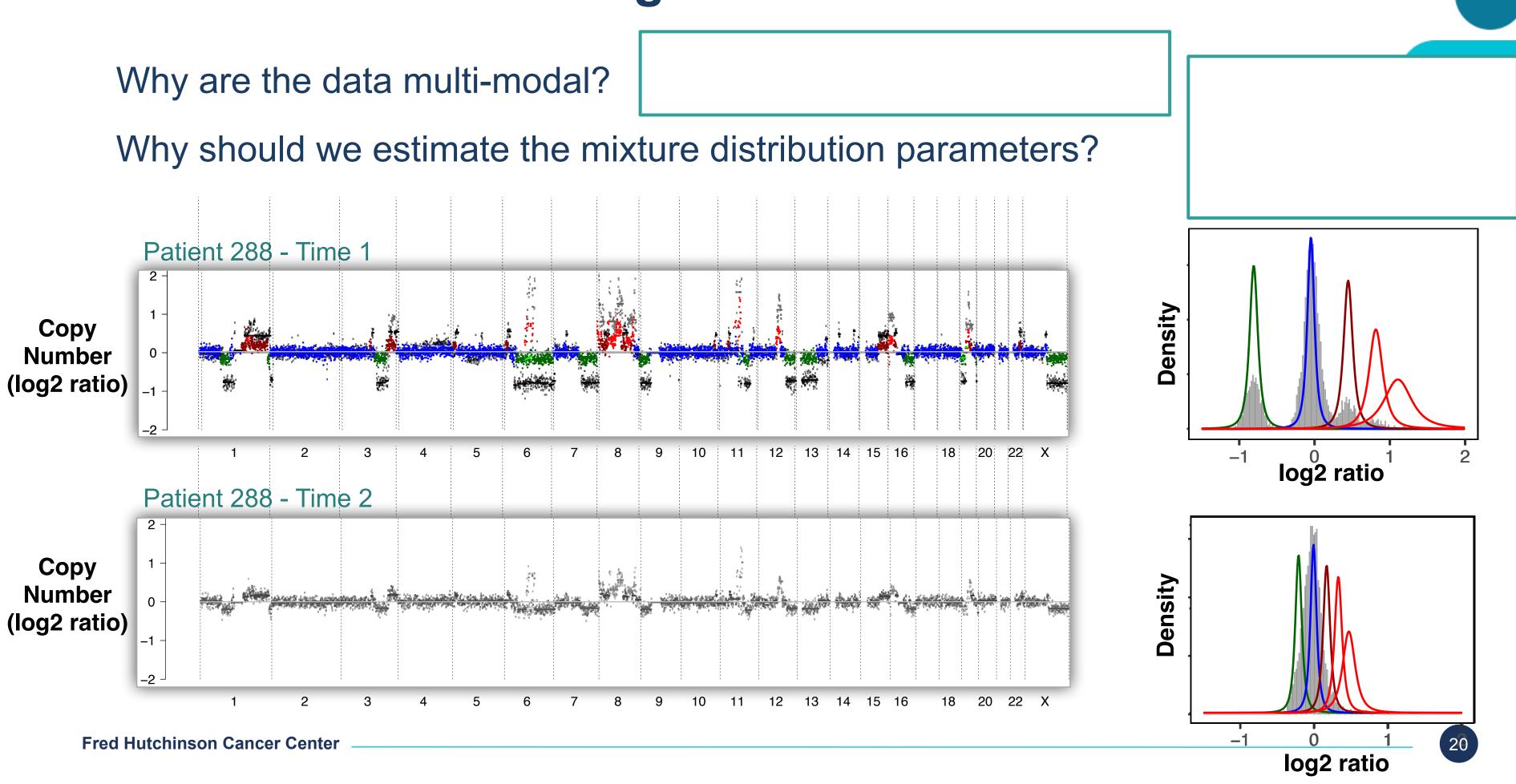
The Gaussian Distribution

Define a likelihood for a *K-component mixture of Gaussians* with means $\mu = \{\mu_1, \dots, \mu_K\}$ and variance $\sigma^2 = \{\sigma_1^2, ..., \sigma_k^2\}$, where the observation model is a conditional Gaussian

$$p(x_t | Z_t = k, \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \mathcal{N}(x_t | \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2)$$

Fred Hutchinson Cancer Center

Rationale for Estimating Likelihood Parameters



Components of a continuous HMM

Input Data: log ratios

There are *T* different data points with continuous values $x = \{x_1, ..., x_T\}$.

Latent State Model

• The latent variables $Z = \{Z_1, ..., Z_T\}$ can be assigned values from a set of K discrete states with probability

Initial state distribution

- The probabilities of the states for the first latent variable Z_1 is the parameter $\pi = \{\pi_1, ..., \pi_K\}$
- π follows a prior distribution $p(\pi_k | \delta_k) = Dir(\pi_k | \delta_k)$

Transition Model (homogenous HMM)

• The conditional distribution between adjacent data *i* and *j* corresponds to a table *A* of transition probabilities p(7 - i) = A

$$p(Z_t = j | Z_{t-1} = i) = A_{ij}$$

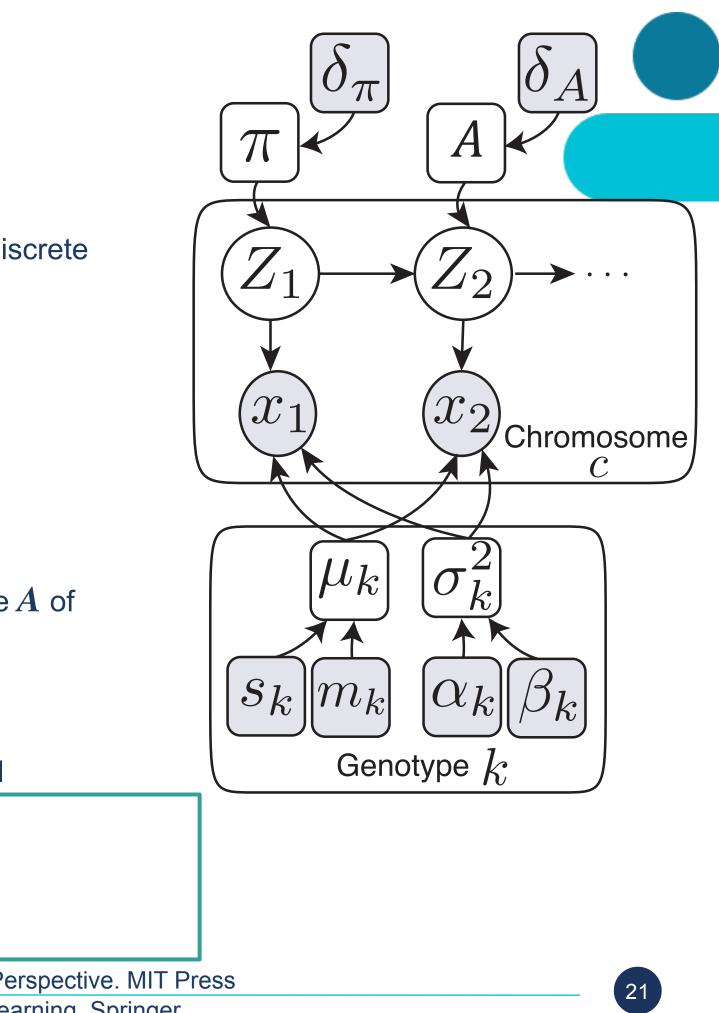
Emission Model (Continuous HMM)

• The emission is modeled using a mixture of Gaussians with the likelihood model

$$p(x_t | Z_t = k, \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \mathcal{N}(x_t | \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2)$$

- μ is modeled with a prior $p(\mu_k | m_k, s_k) = \mathcal{N}(\mu_k | m_k, s_k)$
- σ^2 is modeled with prior $p(\sigma_k^2 | \alpha_k, \beta_k) = InvGamma(\sigma_k^2 | \alpha_k, \beta_k)$

Fred Hutchinson Cancer Center Chapter 17 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press Chapter 13 in Bishop (2006). Pattern Recognition and Machine Learning. Springer



Inference & parameter estimation using EM

Expectation-Maximization: Inference and parameter training

Initialize parameters:

- E-Step: Inference using Forwards-Backwards Algorithm (Baum-Welch)
- 1. Compute "responsibilities" (Posterior of the latent states $\gamma(Z_{1,T})$)
- State $Z_t = k$ is "responsible for generating observation x_t "
- 2. Compute "2-slice marginals" (Posterior of state transitions $\xi(Z_{t-1}, Z_t)$)
- Expected number of transitions from state k to j

M-Step: Update parameters (learning)

- 1. Initial state distribution, π
- 2. Transition probabilities, A
- 3. Emission likelihood parameters, μ

Iterate between E-Step and M-Step, check when log posterior likelihood, $\log P$, stops increasing.

Inference & parameter estimation using EM (E-Step)

E-Step: Forwards-backwards Algorithm (Baum-Welch; Sum-Product)

- Forward, $\alpha(\mathbf{Z}_t)$: joint prob. of observing all past data up to time t when given Z_t
- Backward, $\beta(\mathbf{Z}_t)$: conditional prob. of all *future* data from time t + 1 to T when given Z_t

Forward Probabilities (T × K) - Past

$$\alpha(Z_t = k) = \mathcal{N}(x_t | \mu_k, \sigma_k^2) \sum_{j=1}^K \left\{ A_{jk} \alpha(Z_{t-1} = j) \right\} \qquad \beta(Z_t = k)$$

kward Probabilities $(T \times K)$ - Future

 $f(x) = \sum_{j=1}^{K} \left\{ \mathcal{N}(x_{t+1} | \mu_j, \sigma_j^2) A_{kj} \beta(Z_{t+1} = j) \right\}$

Inference & parameter estimation using EM (E-Step)

E-Step: Compute Responsibilities & 2-Slice Marginals

Responsibilities, $\gamma(Z_t = k)$: is the posterior on the latent states

$$\gamma(Z_t = k) = \frac{\alpha(Z_t = k)\beta(Z_t = k)}{p(\mathbf{x})}$$

- 2-Slice Marginals, $\xi(Z_{t-1} = k, Z_t = j)$: is the expected number of transitions between k to j $\xi(Z_{t-1} = k, Z_t = j) = \frac{\alpha(Z_{t-1} = k)A_{kj}\mathcal{N}(x_t \mid \mu_j)}{n(x_t)}$
- The likelihood $p(\mathbf{x}) = p(\mathbf{x} | \boldsymbol{\mu}, \sigma^2, \boldsymbol{\pi})$ is computed in the forwards recursion

$$\mathscr{E} = \log p(\mathbf{x}) = \sum_{t=1}^{T} \log \left(\sum_{k=1}^{K} \alpha(Z_t = k) \right)$$

Fred Hutchinson Cancer Center See extra slides for more details

Chapter 13 in Bishop (2006). Pattern Recognition and Machine Learning. Springer

Responsibilities Matrix $K \times T$

$$\xi_j, \sigma_j^2)\beta(Z_t = j)$$

2 Slice Marginals Matrix $K \times K \times (T-1)$

Log likelihood

Chapter 17 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

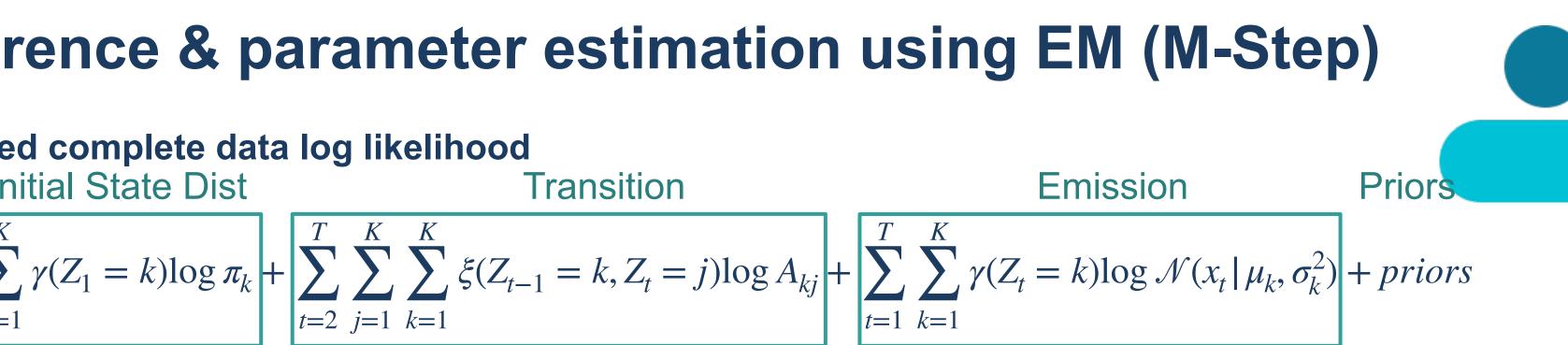
Inference & parameter estimation using EM (M-Step)

Expected complete data log likelihood

Initial State Dist

Q =

Transition



M-Step: update parameters, π , μ , σ^2

$$\hat{\pi}_{k} = \frac{\gamma(Z_{1} = k) + \delta^{\pi}(k) - 1}{\sum_{j=1}^{K} \left\{ \gamma(Z_{1} = j) + \delta^{\pi}(j) - 1 \right\}}$$

$$\hat{\mu}_{k} = \frac{s_{k} \sum_{t=1}^{T} \gamma(Z_{t} = k) x_{t} + m\sigma_{k}^{2}}{s_{k} \sum_{t=1}^{T} \gamma(Z_{t} = k) + \sigma_{k}^{2}}$$

$$\hat{\sigma}_{k}^{2} = \frac{\sum_{t=1}^{T} \gamma(Z_{t} = k) \left(x_{t} - \bar{x}_{k}\right)^{2} + 2\beta_{k}}{\sum_{t=1}^{T} \gamma(Z_{t} = k) + 2(\alpha_{k} + 1)}$$

$$\frac{\sum_{t=1}^{T} \gamma(Z_{t} = k) x_{t}}{\sum_{t=1}^{T} \gamma(Z_{t} = k) + 2(\alpha_{k} + 1)}$$

Where
$$\bar{x} = \frac{\sum_{t=1}^{T} \gamma(Z_t = k) x_t}{\sum_{t=1}^{T} \gamma(Z_t = k)}$$

Fred Hutchinson Cancer Center

See extra slides for more details

IAP for initial state distribution

MAP for Gaussian means

MAP for Gaussian variance terms

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

Inference & parameter estimation using EM (M-Step)

M-Step: Update transition matrix, A

Expected number of transitions from k to j

$$\hat{A}_{kj} = \frac{\sum_{t=2}^{T} \xi(Z_{t-1} = k, Z_t = j) + \sum_{t=2}^{K} \xi(Z_{t-1} = k, Z_t = j)}{\sum_{l=1}^{K} \left\{ \sum_{t=2}^{T} \xi(Z_{t-1} = k, Z_t = l) \right\}}$$

Expected number of transitions from k to any other state

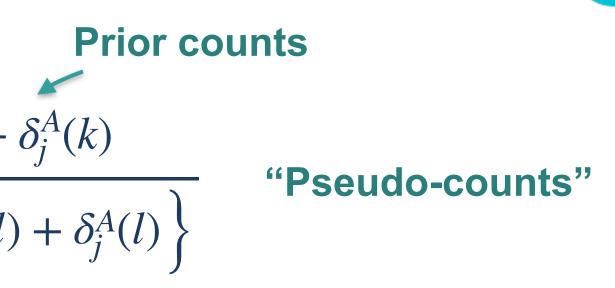
Evaluate the log posterior

 $\log \mathbb{P} = \ell + \log Dir(\hat{\boldsymbol{\pi}} | \boldsymbol{\delta}) + \sum_{k=1}^{K} \left\{ \log \mathcal{N}(\hat{\mu}_k | m_k, s_k) + \log InvGamma(\hat{\sigma}_k^2 | \alpha_k, \beta_k) + \log Dir(A_{k,1:K}^{(0)} | \hat{A}_{k,1:K}) \right\}$ Log priors Log likelihood **Iterate between E-Step and M-Step:** stop when $\log \mathbb{P}$ changes less than ϵ compared to previous

EM iteration.

Fred Hutchinson Cancer Center

See extra slides for more details



Algorithm 1 HMM Parameter Learning using EM

1: Inputs:

Data: $x_{1:T}$

Initial parameters: $\pi^{(0)}, \mu_{1:K}^{(0)}, (\sigma_{1:K}^2)^{(0)}, A^{(0)}$

Hyperparameters: δ^{π} , $m_{1:K}$, $s_{1:K}$, $\alpha_{1:K}$, $\beta_{1:K}$, δ^{A}

2: Initialize:

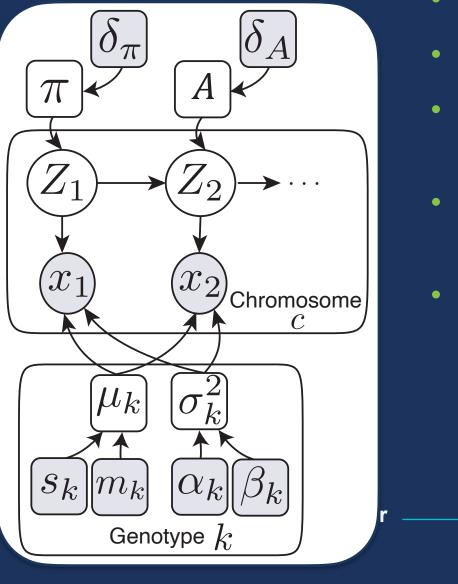
 $\pi \leftarrow \pi^{(0)}, \, \mu_{1:K} \leftarrow \mu_{1:K}^{(0)}, \, \sigma_{1:K}^2 \leftarrow \left(\sigma_{1:K}^2\right)^{(0)}, \, A \leftarrow A^{(0)}$ 3: Compute observed likelihood using initial parameters: $obs.lik \leftarrow compute.gauss.lik()$ 4: 5: while converged = false do **E-Step:** Compute responsibilities using current parameters: 6: $(\gamma(Z_{1:T}), \texttt{loglik}) \leftarrow \texttt{.Call("forward_backward")}$ 7:**M-Step:** Update parameters: 8: $\hat{\pi} \leftarrow \texttt{update.pi()}$ 9: $\hat{\mu}_{1:K} \leftarrow \texttt{update.mu}()$ 10: $\hat{\sigma}_{1:K}^2 \leftarrow \text{update.var()}$ 11: $A \leftarrow update.A()$ 12:Assign updated parameters: 13: $\pi \leftarrow \hat{\pi}, \, \mu_{1:K} \leftarrow \hat{\mu}_{1:K}, \, \sigma_{1:K}^2 \leftarrow \hat{\sigma}_{1:K}^2, \, A \leftarrow \hat{A}$ 14:Re-compute observed likelihood using updated parameters: 15: $obs.lik \leftarrow compute.gauss.lik()$ 16:Compute log Posterior: 17:18: if $(\log P[curr.iter] - \log P[prev.iter] < \epsilon)$ then 19: converged = true 20: end if 21: $logP[prev.iter] \leftarrow logP[curr.iter]$ 22:23: end while

Fred Hutchinson Cancer Cente

24: **return** Converged parameters $\hat{\pi}$, $\hat{\mu}_{1:K}$, $\hat{\sigma}_{1:K}^2$, \hat{A}

3. Copy Number Profiling using a HMM

- Defining the HMM for copy number analysis
- Copy number segmentation using Viterbi
- References:



- **HMMcopy** Ha et al. *Genome Research* **22**:1995-2007 (2012).
- ichorCNA Adalsteinsson*, Ha* Freeman* et al. *Nature Communications* 8:1324 (2017).
- **TitanCNA** Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. *Genome Research* **24**:1881-1893 (2014).
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Probabilistic Model for Copy Number Analysis

Input Data: log ratios

There are T different genomic bins with log ratio data $x = \{x_1, ..., x_T\}$.

Latent State Model: copy number states

There are 5 different possible copy number states (genotypes), $K = \{1, 2, 3, 4, ...\}$

1. A specific genotype $k \in K$ can be assigned to the each of the **latent states**

2. The initial state distribution $\pi = \{\pi_1, ..., \pi_5\}$ is used for the first latent state

Transition Model

3. The probabilities for transitioning to copy number state j in bin t from state i in bin t - 1 are contained in matrix $A \in \mathbb{R}^{K \times K}$ $p(Z_t = j | Z_{t-1} = i) = A_{ii}$

Emission Model: likelihood for log ratio data

For each copy number state, the log ratio means are $\mu = \{\mu_1, ..., \mu_5\}$ and variance $\sigma^2 = \{\sigma_1^2, ..., \sigma_5^2\}$ 4. The **emission model** is a mixture of Gaussians with *unknown* parameters, μ and σ^2 , $p(x_t | Z_t = k, \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \mathcal{N}(x_t | \boldsymbol{\mu}_k, \boldsymbol{\sigma}_k^2)$

Prior Model

5. The **priors** in the model have hyper-parameters δ^{π} , $m_{1:K}$, $s_{1:K}$, $\alpha_{1:K}$, $\beta_{1:K}$, $\delta^{A}_{1:K}$

$$p(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}) = Dirichlet(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}})$$

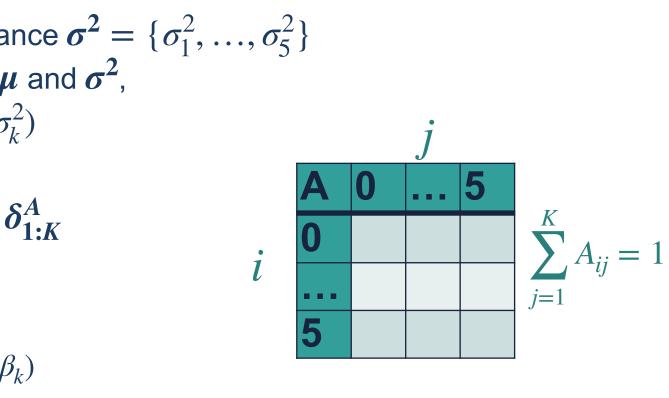
$$p(\mu_k \mid m_k, s_k) = \mathcal{N}(\mu_k \mid m_k, s_k)$$

$$p(\sigma_k^2 \mid \alpha_k, \beta_k) = InvGamma(\sigma_k^2 \mid \alpha_k, \beta_k)$$

$$p(\boldsymbol{A}_{k,1:K} \mid \boldsymbol{\delta}^{\boldsymbol{A}}) = Dirichlet(\boldsymbol{A}_{k,1:K} \mid \boldsymbol{\delta}^{\boldsymbol{A}}_k)$$

$$\{ 5 \}$$

 $\mathbf{Z} = \{Z_1, \dots, Z_T\}$
ate Z_1



29 Ha et al. Genome Research 22:1995-2007 (2012). Adalsteinsson*, Ha* Freeman* et al. Nat Commun 8:1324 (2017)

Probabilistic Model for Copy Number Analysis

Input Data: log ratios

There are *T* different genomic bins with log ratio data $x = \{x_1, ..., x_T\}$.

Latent State Model: copy number states

There are 5 different possible copy number states (genotypes), $K = \{1, 2, 3, 4, 5\}$

1. A specific genotype $k \in K$ can be assigned to the each of the latent states $Z = \{Z_1, ..., Z_T\}$

2. The initial state distribution $\pi = \{\pi_1, ..., \pi_5\}$ is used for the first latent state Z_1

Transition Model

3. The probabilities for transitioning to copy number state *j* in bin *t* from state *i* in bin t - 1 are contained in matrix $A \in \mathbb{R}^{K \times K}$ $p(Z_t = j | Z_{t-1} = i) = A_{ij}$

Emission Model: likelihood for log ratio data

For each copy number state, the log ratio means are $\mu = \{\mu_1, ..., \mu_5\}$ and variance $\sigma^2 = \{\sigma_1^2, ..., \sigma_5^2\}$ 4. The **emission model** is a mixture of Gaussians with *unknown* parameters, μ and σ^2 , $p(x_t | Z_t = k, \mu, \sigma^2) = \mathcal{N}(x_t | \mu_k, \sigma_k^2)$

Prior Model

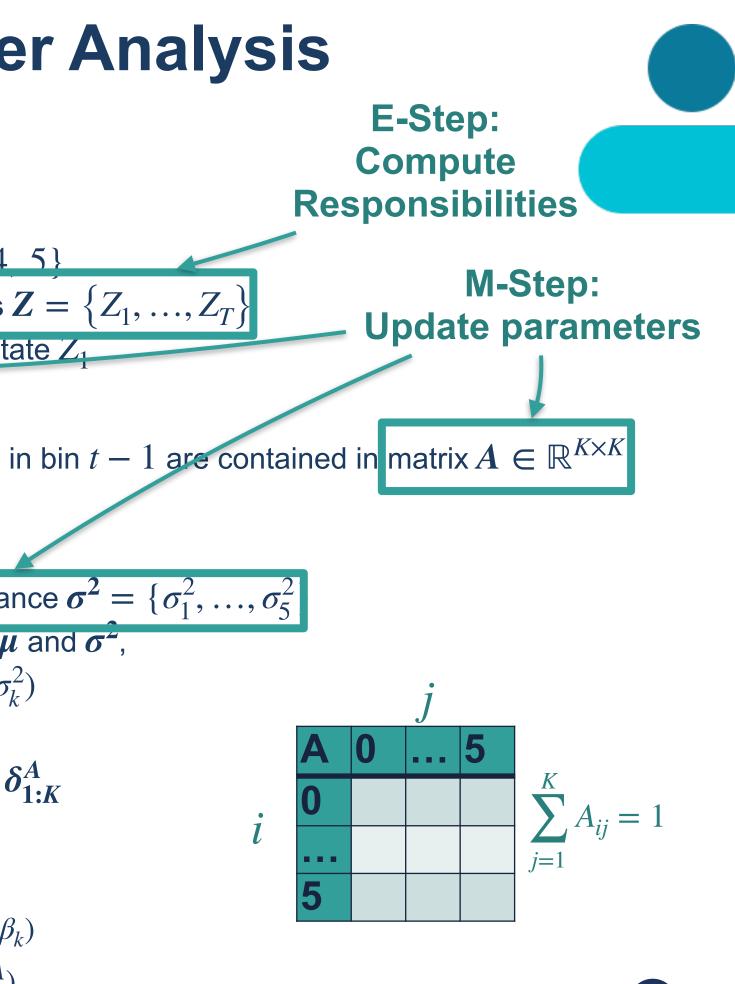
5. The **priors** in the model have hyper-parameters δ^{π} , $m_{1:K}$, $s_{1:K}$, $\alpha_{1:K}$, $\beta_{1:K}$, $\delta^{A}_{1:K}$

$$p(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}) = Dirichlet(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}})$$

$$p(\mu_k \mid m_k, s_k) = \mathcal{N}(\mu_k \mid m_k, s_k)$$

$$p(\sigma_k^2 \mid \alpha_k, \beta_k) = InvGamma(\sigma_k^2 \mid \alpha_k, \beta_k)$$

$$p(\boldsymbol{A}_{k,1:K} \mid \boldsymbol{\delta}^{\boldsymbol{A}}) = Dirichlet(\boldsymbol{A}_{k,1:K} \mid \boldsymbol{\delta}^{\boldsymbol{A}}_k)$$



Ha et al. *Genome Research* **22**:1995-2007 (2012). 30 Adalsteinsson*, Ha* Freeman* et al. *Nat Commun* **8**:1324 (2017)

Copy number segmentation using Viterbi

Α

в

1

O

1

0.8

Allelic ratio

Allelic ratio

Viterbi algorithm (Max-Sum)

Find the most probable seque

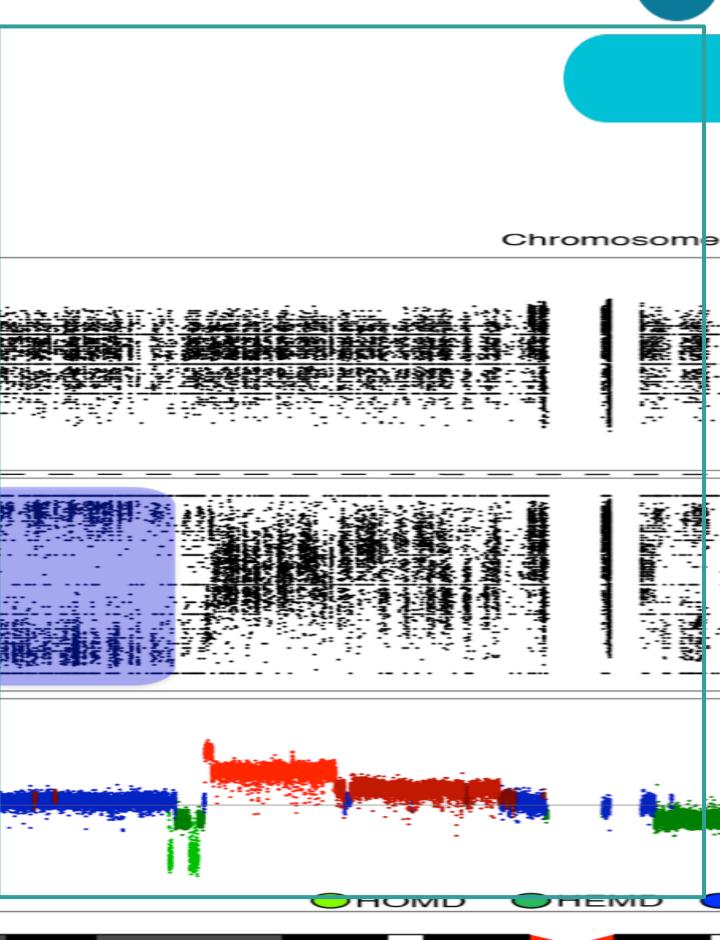
$$\hat{Z}_{1:T} = \max_{Z_{1:T}} \log p(Z_{1:T} | x_1)$$

Perform max-sum of probabili

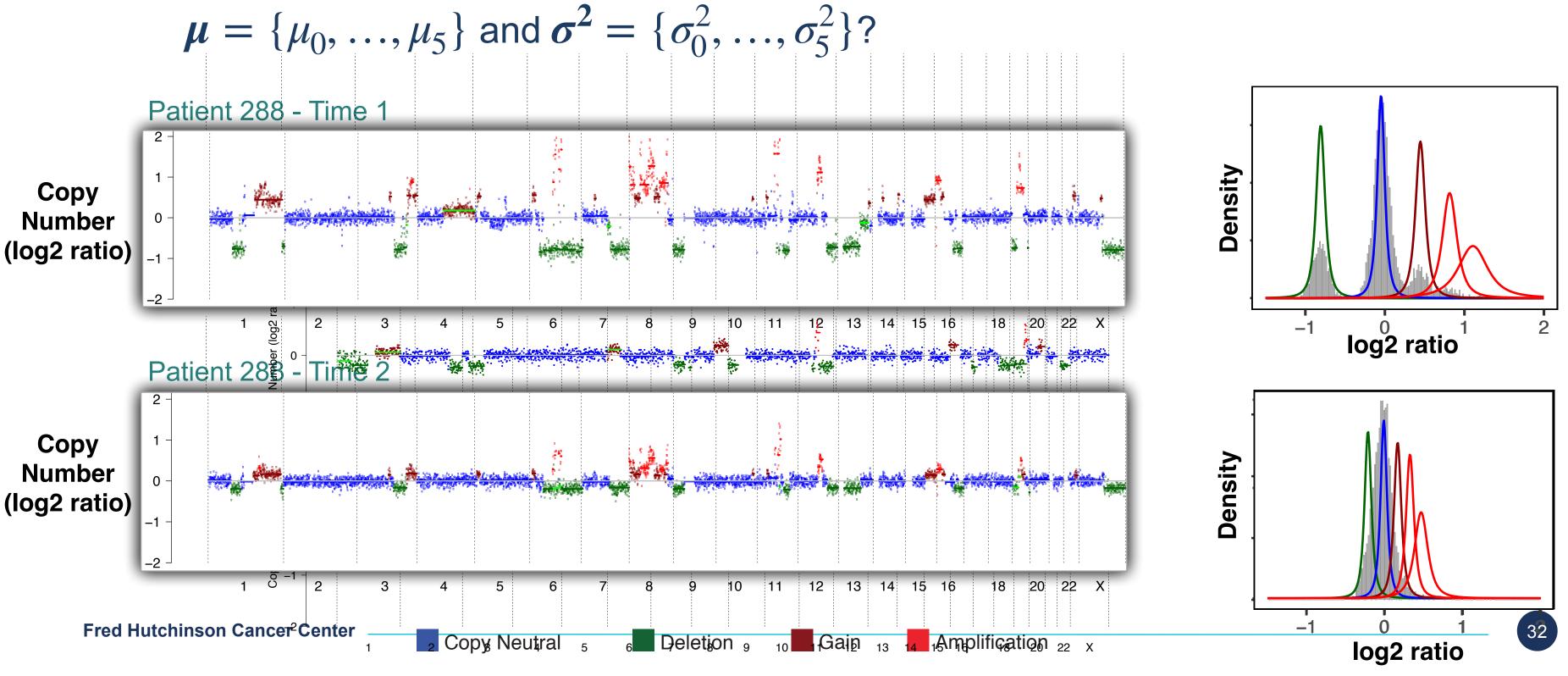
$$\omega(Z_{t+1} = k) = \log \mathcal{N}(x_{t+1} \mid \mu_k, \sigma_k^2)$$

Back trace from $\omega(Z_T)$ to find

(Ref count/Depth) 0.0 7.0 8.0 8.0 8.0 8.0 8.0 11222211111222332222222 Сору Number (log2 ratio) -2 **Chromosome 1 (Bins) Fred Hutchinson Cancer Center**



Rationale for Estimating Likelihood Parameters Why should we estimate the mixture distribution parameters? Can account for technical and biological "noise" by estimating model parameters



Homework #8: Profiling copy number alterations

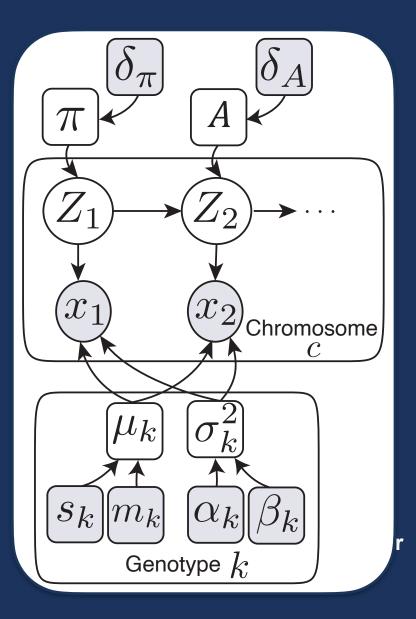
- A. Implement a copy number alteration (CNA) caller described in Lecture 3
 - Implement components of a continuous HMM in a Bayesian framework
 - Learn the parameters and infer the genotypes using EM
 - Predict the copy number alteration segments for a chromosome.
 - Expected outputs for each question will be provided so that you can check your code.
- B. Power calculations for mutation detection described in Lecture 4

Due: May 26th, 2023

Extra Slides

- Continuous hidden Markov models (HMMs)
- Parameter inference using EM and copy number segmentation
- References:

- ichorCNA Adalsteinsson*, Ha* Freeman* et al. *Nature Communications* 8:1324 (2017). • **HMMcopy** - Ha et al. *Genome Research* **22**:1995-2007 (2012).
- **TitanCNA** Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. *Genome Research* **24**:1881-1893 (2014).
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738



ichorCNA: Model inference using EM (extra slide 1) Complete data likelihood: joint distribution of latent and observed variables $\kappa_t (Z_t, \mu, \sigma^2)$ p

$$(x_{1:T}, Z_{1:T} | \boldsymbol{\theta}) = p(Z_1 | \pi_{1:K}) \left[\prod_{t=2}^{I} p(Z_t | Z_{t-1}, A) \right] \prod_{t=1}^{I} p(X_t)$$
$$= \prod_{k=1}^{K} \pi_k^{\mathbb{I}(Z_t = k)} \left[\prod_{t=2}^{T} \prod_{k=1}^{K} \prod_{j=1}^{K} A_{jk}^{\mathbb{I}(Z_{t-1} = j)\mathbb{I}(Z_t = k)} \right]$$

where
$$\theta = \{\pi_{1:K}, \mu_{1:K}, \sigma_{1:K}^2, A\}$$

Complete data log likelihood

$$\log p(x_{1:T}, Z_{1:T} | \boldsymbol{\theta}) = \sum_{k=1}^{K} \mathbb{I}(Z_i = k) \log \pi_k + \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \mathbb{I}(Z_{t-1} = j, Z_t = k) \log \pi_k$$

Expected complete data log likelihood

$$Q = \sum_{k=1}^{K} \gamma(Z_1 = k) \log \pi_k + \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{j=1}^{K} \xi(Z_{t-1} = j, Z_t = k) \log A_{jk} + \sum_{t=2}^{K} \sum_{j=1}^{K} \sum_{$$

Fred Hutchinson Cancer Center Additional definitions for your reference

$$\prod_{t=1}^{T} \prod_{k=1}^{K} \mathcal{N}(x_t | \mu_k, \sigma_k^2)^{\mathbb{I}(Z_t = k)}$$

 $\log A_{jk} + \sum_{k=1}^{T} \sum_{k=1}^{K} \mathbb{I}(Z_i = k) \log \mathcal{N}(x_t | \mu_k, \sigma_k^2)$ $t=1 \ k=1$

+ $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \gamma(Z_t = k) \log \mathcal{N}(x_t | \mu_k, \sigma_k^2)$ $t=1 \ k=1$

Chapter 13 in Bishop (2006). Pattern Recognition and Machin 35 Learning. Springer

ichorCNA: Model inference using EM (extra slide 2)

E-Step: compute responsibilities using the forwards-backwards algorithm (Baum-Welch)

$$\gamma(\mathbf{Z}_{t}) = p(\mathbf{Z}_{t} | \mathbf{x}, \theta^{old}) = \frac{p(\mathbf{x} | \mathbf{Z}_{t} | \theta^{old})p(\mathbf{x} | \theta^{old})}{p(\mathbf{x} | \theta^{old})}$$
$$\gamma(\mathbf{Z}_{t}) = \frac{p(x_{1}, \dots, x_{t}, \mathbf{Z}_{t})p(x_{t+1}, \dots, x_{T} | \mathbf{Z}_{t})}{p(\mathbf{x})}$$
$$\mathbf{Respons}$$
$$\gamma(\mathbf{Z}_{t}) = \frac{\alpha(\mathbf{Z}_{t})\beta(\mathbf{Z}_{t})}{p(\mathbf{x})}$$
$$\mathbf{Matrix}$$

Where $\alpha(Z_t = k) = \mathcal{N}(x_t | Z_t = k) \sum_{j=1}^{K} \left\{ A_{jk} \alpha(Z_t = j) \right\}$ is the forward recursion probability Where $\beta(Z_t = k) = \sum_{i=1}^{K} \left\{ \mathcal{N}(x_{t+1} | Z_{t+1} = j) A_{kj} \alpha(Z_{t+1} = j) \right\}$ is the backward recursion probability

$$\xi(Z_{t-1}, Z_t) = p(x | Z_{t-1}, Z_t) P(Z_{t-1}, Z_t)$$

$$\xi(Z_{t-1}, Z_t) = \frac{\alpha(Z_{t-1})p(x_t | Z_t)p(Z_t | Z_t)}{p(x)}$$

 $\mathscr{E} = \log p(\mathbf{x}) = \sum_{t=1}^{T} \log \left(\sum_{t=1}^{K} \alpha(Z_t = k) \right)$ **Likelihood function**

Additional definitions for your reference **Fred Hutchinson Cancer Center**

$\mathcal{P}(\mathbf{Z}_t | \theta^{old})$

ibilities

 $K \times T$

Forward Probabilities Matrix $K \times T$

Backward Probabilities Matrix $K \times T$

 $(-1)\beta(\mathbf{Z}_t)$

2 Slice Marginals Matrix $K \times K \times (T-1)$

Chapter 13 in Bishop (2006). Pattern Recognition and Machine Learning. Springer

ichorCNA: Model inference using EM (extra slide 3)

M-Step: Update the parameters given the responsibilities $\mathbb{P}rior(\pi_{1:K}, \mu_{1:K}, \sigma_{1:K}^2, A) = \prod_{k=1}^{K} Dir(\pi_k | \delta_k) Dir(A_k | \delta_A) \mathcal{N}(\mu_k | \alpha, \beta) InvGamma(\sigma_k^2 | \alpha_k, \beta_k)$ **Priors**

 $\mathcal{O} = Q + \log \mathbb{P}(\pi_{1:K}, \mu_{1:K}, \sigma_{1:K}^2, A)$ Complete data log likelihood + log priors The object function \mathcal{O} is used to obtain the update equations for $\pi_{1:K}$ and $\mu_{1:K}$

 $\frac{\partial \mathcal{O}}{\partial \pi_k} = 0$, find $\hat{\pi}_k$ MAP for initial state distribution $\frac{\partial \mathcal{O}}{\partial \mu_k} = 0$, find $\hat{\mu}_k$ MAP for for Gaussian means $\frac{\partial \mathcal{O}}{\partial \sigma_k^2} = 0$, find $\hat{\sigma}_k^2$ MAP for for Gaussian variance $\frac{\partial \mathcal{O}}{\partial A_{jk}} = 0$, find \hat{A}_{jk} MAP for transition probabilities

unitor the lear rea **EM Convergence:** after each iteratic

on, monitor the log posterior

$$\ell = \log p(\mathbf{x}) = \sum_{t=1}^{T} \log \left(\sum_{k=1}^{K} \alpha(Z_t = k) \right)$$

 $\log \mathbb{P} = \ell + \log \mathbb{P}rior(\pi_{1\cdot K}, \mu_{1\cdot K}, \sigma_{1\cdot K}^2, A)$

Fred Hutchinson Cancer Center Additional definitions for your reference

Incomplete Data Log likelihood

- Log posterior
- Chapter 13 in Bishop (2006). Pattern Recognition and Machi 37 Learning. Springer