

CANCER GENOMICS Lecture 2: Probabilistic Methods for Mutation Detection GENOME 541 Spring 2023 May 11, 2023

Gavin Ha, Ph.D. Public Health Sciences Division Human Biology Division

@GavinHa
gha@fredhutch.org
https://github.com/GavinHaLab
GavinHaLab.org

Outline: Probabilistic Methods for Mutation Detection

1.Primer on statistical modeling (cont'd)

Mixture models, inference and parameter estimation using the EM algorithm

2. Detecting Mutations in Cancer Genomes

- Visualizing somatic vs germline SNVs
- Sequencing read count data

3. Mixture Models for SNV Detection

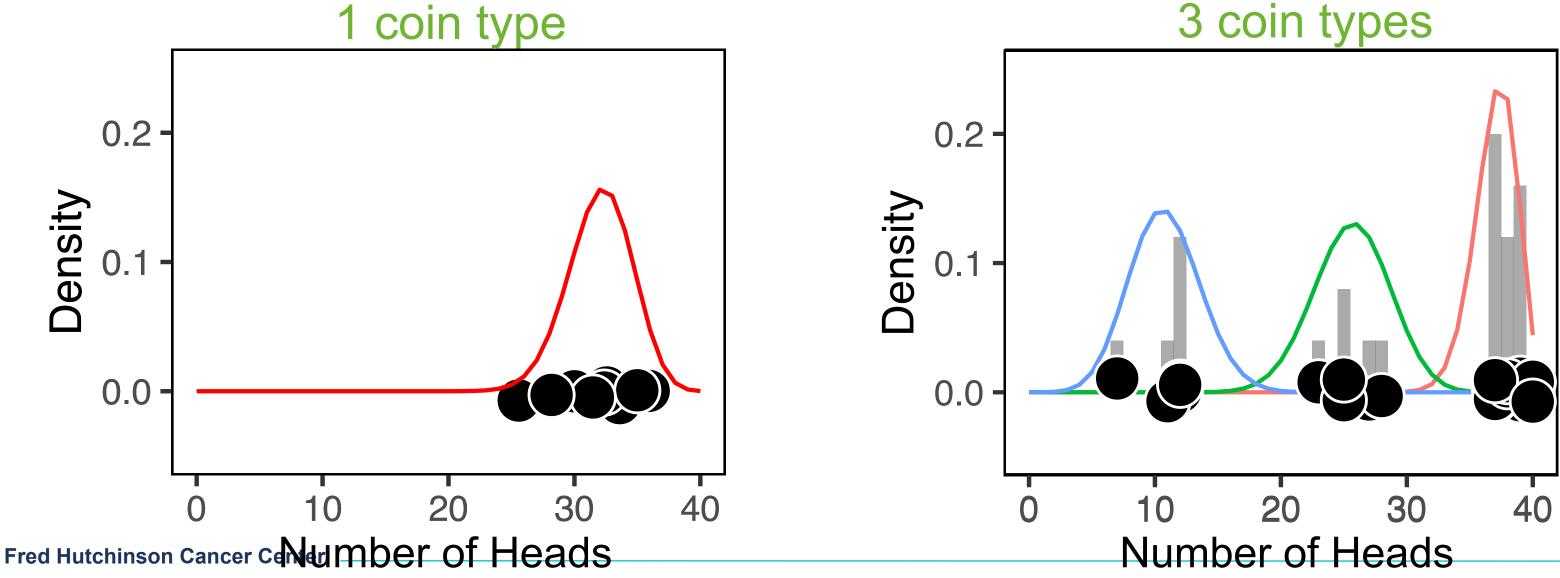
- SNV genotyping strategy
- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

1. Primer on statistical modeling (cont'd)

- Probability
 - Unsupervised learning, probability rules & Bayes' theorem
 - Binomial distribution, Bayesian statistics
 - Beta-binomial model example
- Mixture models, EM inference & parameter learning
- References:
 - Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
 - Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Mixture Model: Referee example with multiple coins

- Recall: There are T different referees who tossed the same coin $N = \{1, \dots, N_T\}$ times and came up with counts of heads $\boldsymbol{x} = \{1, \dots, x_T\}$.
- Now suppose there are **3 types of coins**: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as {*fair*, *heads*, *tails*}.
- Each referee draws one coin (with replacement) from a hat containing these coin types mixed together.



Mixture Model: Referee example with multiple coins

- Recall: There are T different referees who tossed the same coin $N = \{1, ..., N_T\}$ times and came up with counts of heads $x = \{1, \dots, x_T\}$.
- Now suppose there are **3 types of coins**: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as { *fair*, *heads*, *tails* }.
- Each referee draws one coin from a hat that contains a bunch of these coin types mixed together.
- 1. We don't know the proportion of each coin type in the hat.
- 2. We don't know which coin each referee drew from the hat.
- 3. We don't know the fairness (probability of heads) for each type of coin.

Referee	# of tosses (<i>N</i>)	# of heads (x)	Prop. of heads	Type of coin used?
Referee 1	40	25	0.63	?
Referee 2	42	35	0.83	?
Referee 3	39	27	0.69	?
Referee 4	XT	Ντ	x _T /N _T	?

Fred Hutchinson Cancer Center

Coin Type	Proportion in hat	Prob. of heads
"Fair"	?	?
"Heads"	?	?
"Tails	?	?

Mixture Model: Latent state model

1. What is the proportion of each coin type in the hat? Find the probability for drawing a coin type.

• π_k is the probability of drawing coin type $k \in \{fair, heads, tails\}$

• $\pi = (\pi_{fair}, \pi_{heads}, \pi_{tails})$ are the mixture weights where $\sum_{k=1}^{K} \pi_k = 1$

2. Which coin did each referee draw? Define the latent variables.

- Let $Z_i = k$ be the type of coin that referee *i* draws
- Z_i is called a *latent variable* and follows a *Categorical* distribution with parameter π

$$p(Z_i = k \mid \pi_{1:K}) = Cat(Z_i = k \mid \pi_{1:K})$$

$$= \begin{cases} \pi_{fair} & \text{if } k = fair \\ \pi_{heads} & \text{if } k = heads \\ \pi_{tails} & \text{if } k = tails \end{cases}$$

• The proportions $\pi_{1:K}$ of the coin types follows a Dirichlet distribution (conjugate prior)

$$p(\pi_{1:K} | \delta_{1:K}) = Dirichlet(\pi_{1:K} | \delta_{1:K})$$

Fred Hutchinson Cancer Center

Section 11.2 in Murphy (2012). Chapter 9 in Bishop (2006). Pattern Machine Learning: A Probabilistic Recognition and Machine Learning Perspective. MIT Press

Coin Type	Proportion in hat	Prob. of heads
"Fair"	π_{fair}	?
"Heads"	π_{heads}	?
"Tails	π_{tails}	?

Referee	Type of coin used?
Referee 1	Z_1
Referee 2	Z_2
Referee 3	Z_3
Referee T	Z_T

Mixture Model: Likelihood as a mixture of binomials

3. What is the fairness (prob. of heads) for each type of coin? Find the probability of heads for each coin type.

- Recall: for a single coin, $p(x_i | N_i, \mu) = Bin(x_i | N_i, \mu)$
- Define the likelihood for a **3-component mixture of binomials** with 3 parameters, μ_{fair} , μ_{heads} , μ_{tails} , one for each type of coin

$$p(x_i | Z_i = k, N_i, \mu_{1:K}) = Bin(x_i | N_i, \mu_k)$$
 Observed likelihood
$$p(x_i | N_i, \mu_{1:K}, \pi_{1:K}) = \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$
 Mixture model

• Beta prior distribution $p(\mu_k | \alpha_k, \beta_k) = Beta(\mu_k | \alpha_k, \beta_k)$

Log Likelihood Function of the Model

$$L(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$
 Like
$$\ell = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k) \right)$$
 Log

Likelihood function

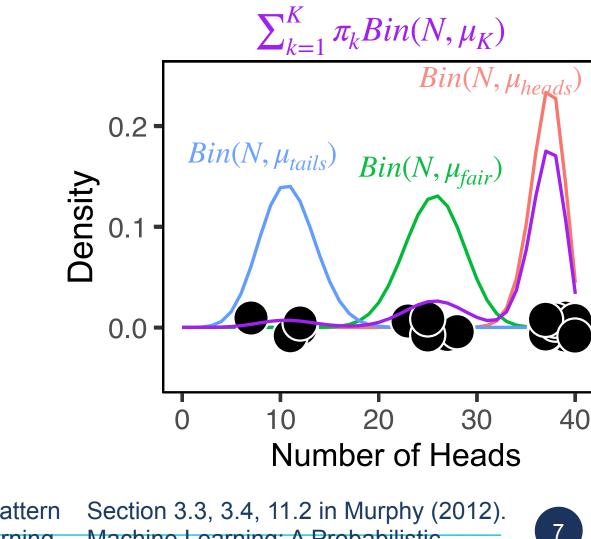
Log likelihood

Chapter 9 in Bishop (2006). PatternSection 3.3, 3.4, 11.2 in Murphy (2012)Recognition and Machine Learning.Machine Learning: A ProbabilisticSpringerPerspective. MIT Press

Fred Hutchinson Cancer Center

ure of binomials

Coin Type	Proportion in hat	Prob. of heads
"Fair"	π_{fair}	μ_{fair}
"Heads"	π_{heads}	μ_{heads}
"Tails	π_{tails}	μ_{tails}



Mixture Model: Inference & parameter estimation using EM (1)

Expectation-Maximization

Initialize parameters: $\pi_{1:K}$ and $\mu_{1:K}$

E-Step: compute "responsibilities" (inference)

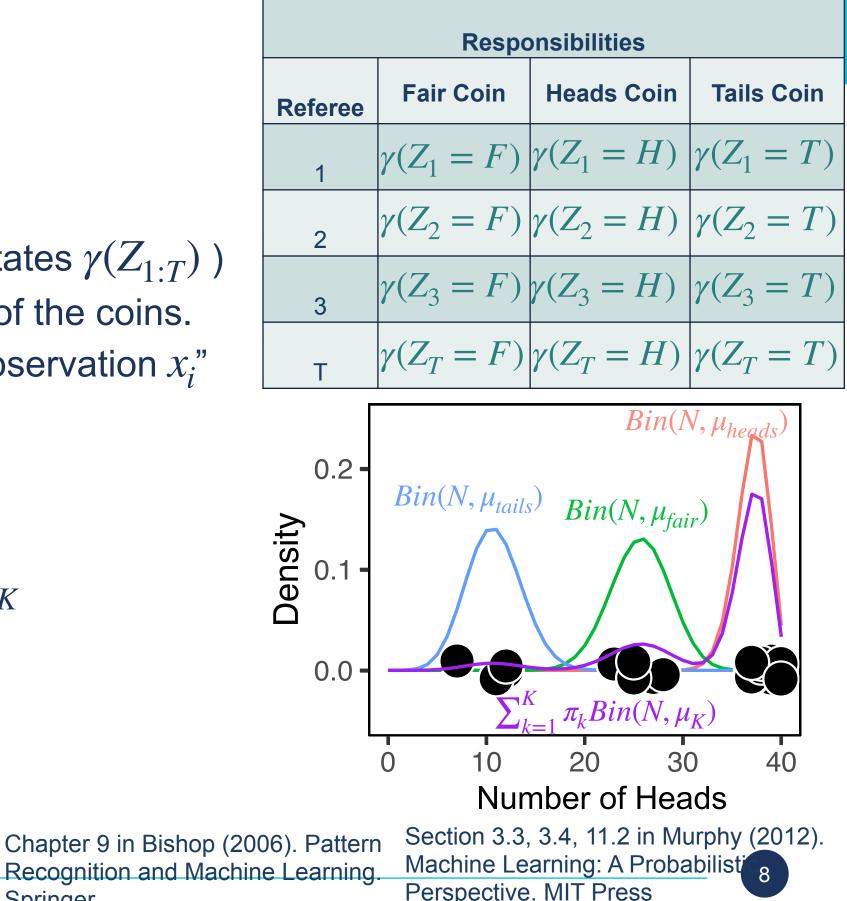
- 1. Which coin did each referee draw? (Posterior of the latent states $\gamma(Z_{1,T})$)
- **Soft-clustering:** Referee *i* has a probability for using each of the coins.
- **Responsibilities:** "coin that is responsible for generating observation x_i "

M-Step: Update parameters (learning)

- 2. What is the proportion of each coin type in the hat? $\pi_{1:K}$
- 3. What is the fairness (prob. of heads) for each coin type? $\mu_{1\cdot K}$

Iterate between **E-Step** and **M-Step**,

check when log-posterior stops increasing.



Mixture Model: Inference & parameter estimation using EM (2)

E-Step: compute responsibilities (inference)

- 1. What is the probability for a referee to draw each coin type? (Posterior of the latent states $Z_{1 \cdot T}$)
- Find the responsibilities given the current parameters

$$p(Z_i = k | x_i, N_i, \pi_{1:K}, \mu_{1:K}) = \frac{p(x_i | Z_i = k)p(Z_i = k)}{p(x_i)}$$
$$= \frac{Bin(x_i | N_i, \mu_k)\pi_k}{\sum_{k'=1}^{K} Bin(x_i | N_i, \mu_{k'})\pi_{k'}}$$
$$= \gamma(Z_i = k)$$

Responsibilities = "coin that is responsible for generating observation x_i "

- Soft-clustering: Referee i has a probability for using each of the coins.
- $\gamma(Z_{1,T})$ is a matrix of probabilities with dimensions $T \times K$

Bayes' Rule Posterior distribution of the latent variables

Responsibility **Referee** *i* and coin *k*

Mixture Model: Inference & parameter estimation using EM (3) **M-Step: Update parameters (learning)**

2. What is the proportion of each coin type in the hat?

MAP for
$$\pi$$
 $\hat{\pi}_{k} = \frac{\sum_{i=1}^{T} \gamma(Z_{i} = k) + \delta(k) - 1}{\sum_{j=1}^{K} \sum_{i=1}^{T} \left\{ \gamma(Z_{i} = j) + \delta(j) - 1 \right\}}$

3. What is the fairness (prob. of heads) for each coin type?

MAP for
$$\mu$$
 $\hat{\mu}_k = \frac{\sum_{i=1}^T \gamma(Z_i = k) x_i + \alpha_k - 1}{\sum_{i=1}^T \gamma(Z_i = k) N_i + \alpha_k + \beta_k - 1}$

Evaluate the log likelihood and log posterior: use updated parameters **Log posterior** $\log \mathbb{P} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_k Bin(x_i | N_i, \hat{\mu}_k) \right) + \log Dir(\hat{\pi} | \delta) + \sum_{k=1}^{K} \log Beta(\hat{\mu}_k | \alpha_k, \beta_k)$ **Log likelihood Log priors**

Iterate between E-Step and M-Step:

Stop EM when new $\log \mathbb{P}$ changes less than ϵ compared to previous EM iteration.

Fred Hutchinson Cancer Center

Chapter 9 in Bishop (2006). Pattern Section 3.3, 3.4, 11.2 in Murphy (2012). Recognition and Machine Learning. Machine Learning: A Probabilistic Springer Perspective. MIT Press

Conjugate b/t **Categorical & Dirichlet** distributions

Conjugate b/t **Binomial and Beta** distributions

2

10

Algorithm 1 Binomial Mixture Model Inference and Learning using EM 1: Inputs: Data: $x_{1:T}, N_{1:T}$ Initial parameters: $\pi_{1:K}^{(0)}, \mu_{1:K}^{(0)},$ Hyperparameters: $\delta_{1:K}$, $\alpha_{1:K}$, $\beta_{1:K}$ 2: Initialize: $\pi_{1:K} \leftarrow \pi_{1:K}^{(0)}, \, \mu_{1:K} \leftarrow \mu_{1:K}^{(0)}$ $\log P \leftarrow -Inf$ 3: 4: Compute the observed likelihood using initial parameters: $lik \leftarrow compute.binom.lik()$ 5:6: while converged = false do **E-Step:** Compute responsibilities: 7: $\gamma(Z_{1:T}) \leftarrow \text{compute.responsibilities()}$ 8: **M-Step:** Update parameters: 9: $\hat{\pi}_{1:K} \leftarrow \texttt{update.pi()}$ 10: $\hat{\mu}_{1:K} \leftarrow \texttt{update.mu()}$ 11: Assign updated parameters: 12: $\pi_{1:K} \leftarrow \hat{\pi}_{1:K}, \, \mu_{1:K} \leftarrow \hat{\mu}_{1:K}$ 13:Re-compute the observed likelihood using updated parameters: 14:15:Compute the log-likelihood: 16: $loglik \leftarrow compute.loglik()$ 17:Compute log Posterior: 18: 19: if $(\log P[curr.iter] - \log P[prev.iter] < \epsilon)$ then 20:converged = true 21:end if 22: $logP[prev.iter] \leftarrow logP[curr.iter]$ 23:24: end while 25: **return** Responsibilites $\gamma(Z_{1:T})$, Converged parameters $\hat{\pi}_{1:K}$, $\hat{\mu}_{1:K}$

Fred Hutchinson Cancer Center

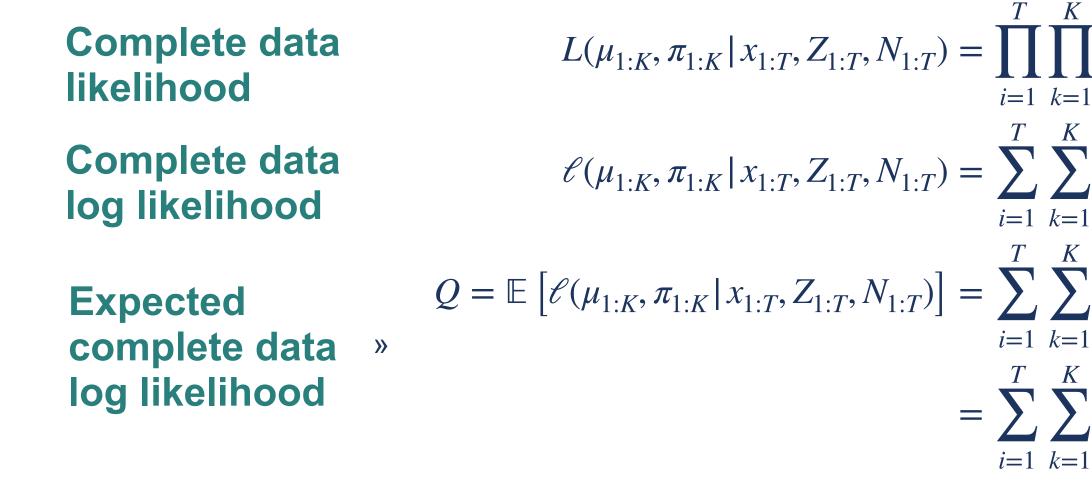
Mixture Model: Inference & parameter estimation using EM (extra slide 1)

Incomplete data log likelihood

$$L(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_{1:T}, \mu_{1:K}) = \prod_{i=1}^{T} \prod_{k=1}^{K} \pi_k Bin(x_{1:T}, \mu_{1:K}) = \prod_{i=1}^{K} \pi_i Bin(x_{1:T}, \mu_{1:K}) = \prod_{i=1}^{T} \prod_{k=1}^{K} \pi_i Bin(x_{1:T}, \mu_{1:K}) = \prod_{i=1}^{K} \pi_i Bin(x_{1:T}, \mu_{1:T}) = \prod_{i=1}^{K} \pi_i Bin(x_{1:T}, \mu_{1:T})$$

The incomplete data log likelihood (plus the priors) is used to monitor EM convergence

Expected complete data log likelihood



The expected complete data log likelihood in the M-Step is used when updating parameters.

Fred Hutchinson Cancer Center

Additional definitions for your reference

 $(x_i | N_i, \mu_k)$

$$\pi_k Bin(x_i | N_i, \mu_k)^{\mathbb{I}(Z_i = k)}$$

$$\mathbb{I}(Z_i = k) \{ \log \pi_k + \log Bin(x_i | N_i, \mu_k) \}$$

$$\mathbb{E} \left[\mathbb{I}(Z_i = k) \right] \{ \log \pi_k + \log Bin(x_i | N_i, \mu_k) \}$$

$$\gamma(Z_i = k) \{ \log \pi_k + \log Bin(x_i | N_i, \mu_k) \}$$

Mixture Model: Inference & parameter estimation using EM (extra slide 2) **M-Step:** Update the parameters given the responsibilities

- $p(\pi_{1:K}, \mu_{1:K}) = Dir(\boldsymbol{\pi} | \boldsymbol{\delta}) \prod_{k=1}^{K} Beta(\mu_k | \alpha, \beta)$ **Priors**
- The object function \mathcal{O} is used to obtain the update equations for $\pi_{1:K}$ and $\mu_{1:K}$

$$\frac{\partial \mathcal{O}}{\partial \mu_k} = 0$$
, find $\hat{\mu}_k$ and $\frac{\partial \mathcal{O}}{\partial \pi_k} = 0$, find

EM Convergence: after each iteration, monitor the log posterior

$$\mathscr{C} = \sum_{i=1}^{T} \log\left(\sum_{k=1}^{K} \pi_k B\right)$$

 $\log \mathbb{P}(\pi_{1:K}, \mu_{1:K} | x_{1:T}) = \ell + \log p(\pi_{1:K}, \mu_{1:K}) \quad \text{Log posterior}$

- If the log posterior, $\log \mathbb{P}(\pi_{1:K}, \mu_{1:K} | x_{1:T})$, stops increasing by ϵ , then EM is converged.
- If not using a Bayesian framework, then use the log likelihood, ℓ , to monitor convergence.

Fred Hutchinson Cancer Center

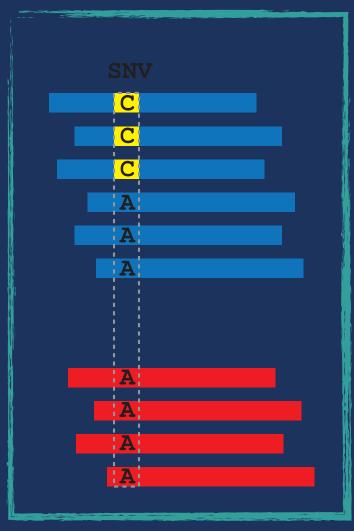
Additional definitions for your reference

- $\mathcal{O} = Q + \log p(\pi_{1:K}, \mu_{1:K})$ Complete data log likelihood + log priors
 - nd $\hat{\pi}_{k}$

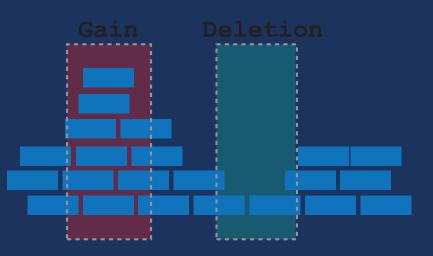
 - $Bin(x_i | \mu_k, N_i)$ Incomplete Data Log likelihood

2. Detecting Mutations in Cancer Genomes

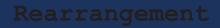
Mutations (SNV, INDEL)

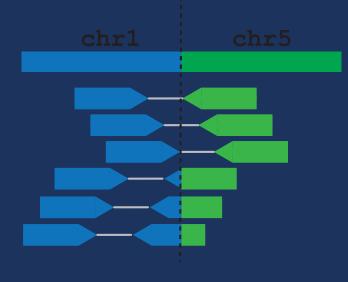


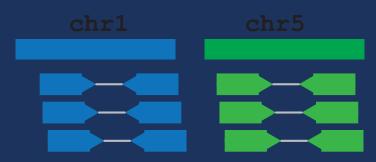
Copy Number Alterations



Fred Hutchinson Cancer Center







14

Visual inspection using IGV: Germline SNVs

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)

										IGV															
Human hg19	•	chr17			\$	chr17	7:37,	868,691	-37,86	8,742	Go	Ê	•	• 🥳	> 🖪	X			—					+	·]
			p13.2	p13.1	p12	p11	1.2	p11.1	q11.	2	q12 (21.1	q21.31	qź	21.33	q22	q23.	L q23	.3 q2	24.2		q25.1		q25.3	
data Tv De	cell antibody lab		1		37,868,7 	00 bp		I	37,868	8,710 bp 		— 53 I	-	8,720 bp		1	37	,868,730 	bp			3	7,868,74 	• 40 bp	F
0185532038_Illumina_P5-Poded Rojan.bam Coverage		[0 - 97]																							
												Total	7:37,868,7 count: 33												
Norma												G:0 T:17	5 (48%, 2+ 7 (52%, 0+												
o185532038_Illumina_P5-Poded	e											N : 0 T T					_								
												T T					_								
Sequence →		AG	стт	TG	ATG	GGI	A	AGA	GT	GGG	СА	C G A	TG	AC	СТС	AG	AC	AGT	G 1	C	AG	GG	CA	GA	c
RefSeq Genes			F			u		· · ·	,		,,	ERB	, , B2	_,	· · · ·	,		,	,	_,	·)	,	,	,	
4 tracks					ncor	Con	to	r															250M o	of 436M	

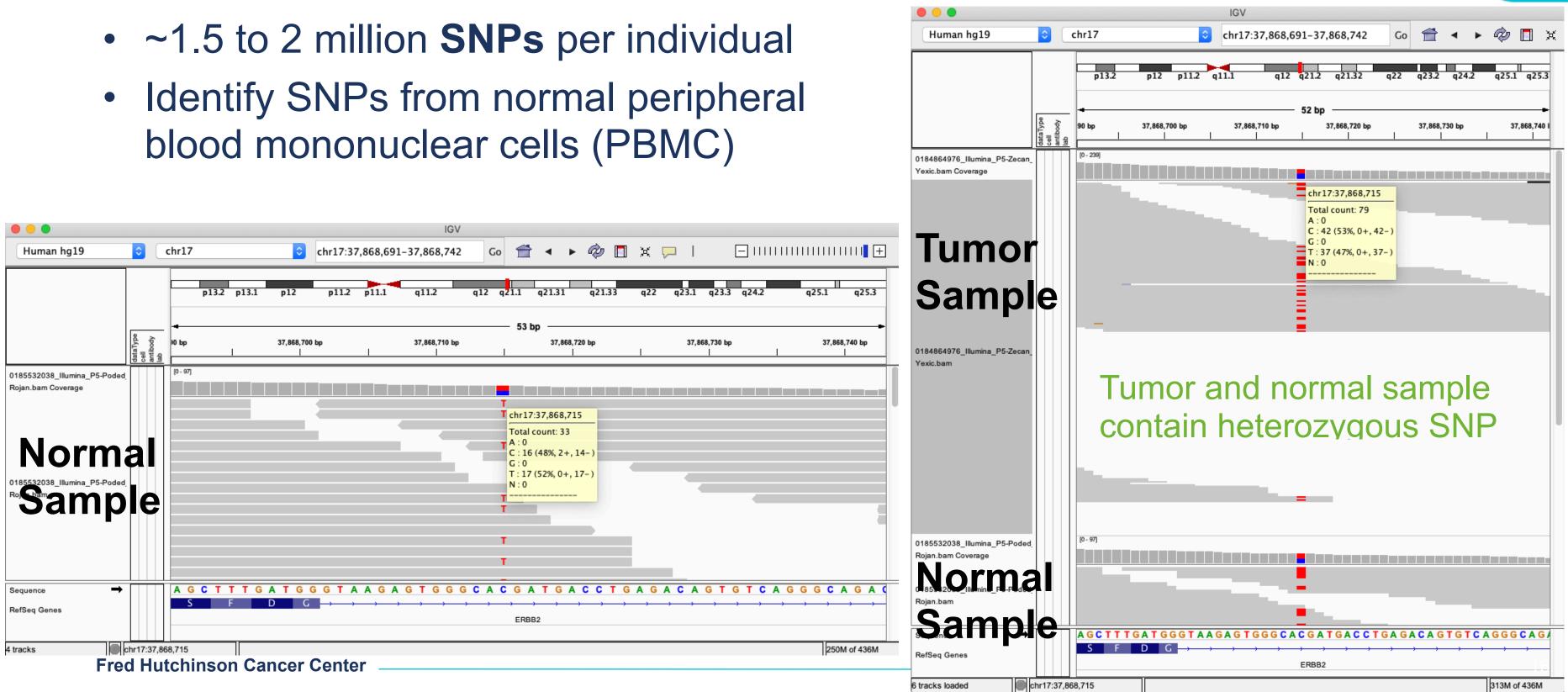
Heterozygous SNP with 17 reads containing the variant and having depth 33 reads

17/33 (48%) variant allele fraction (VAF)

Visual inspection using IGV: Germline SNVs

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

- blood mononuclear cells (PBMC)



Visual inspection using IGV: Somatic SNVs

- Somatic **SNV** requires comparing case (tumor) with control (PBMC)
- On the order of 10 to 10^4 number of mutations

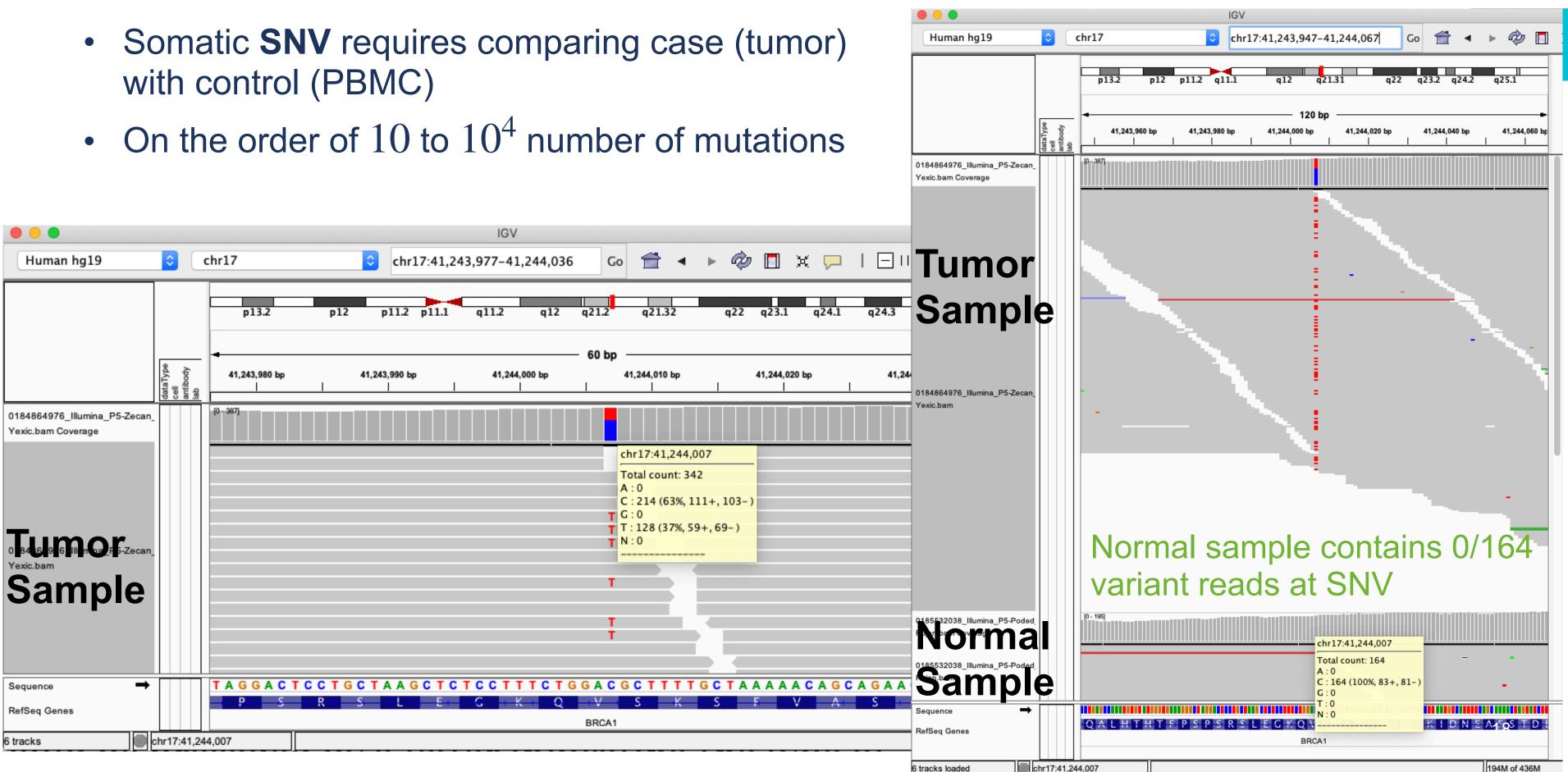


Potential SNV with 128/342 (37%) VAF

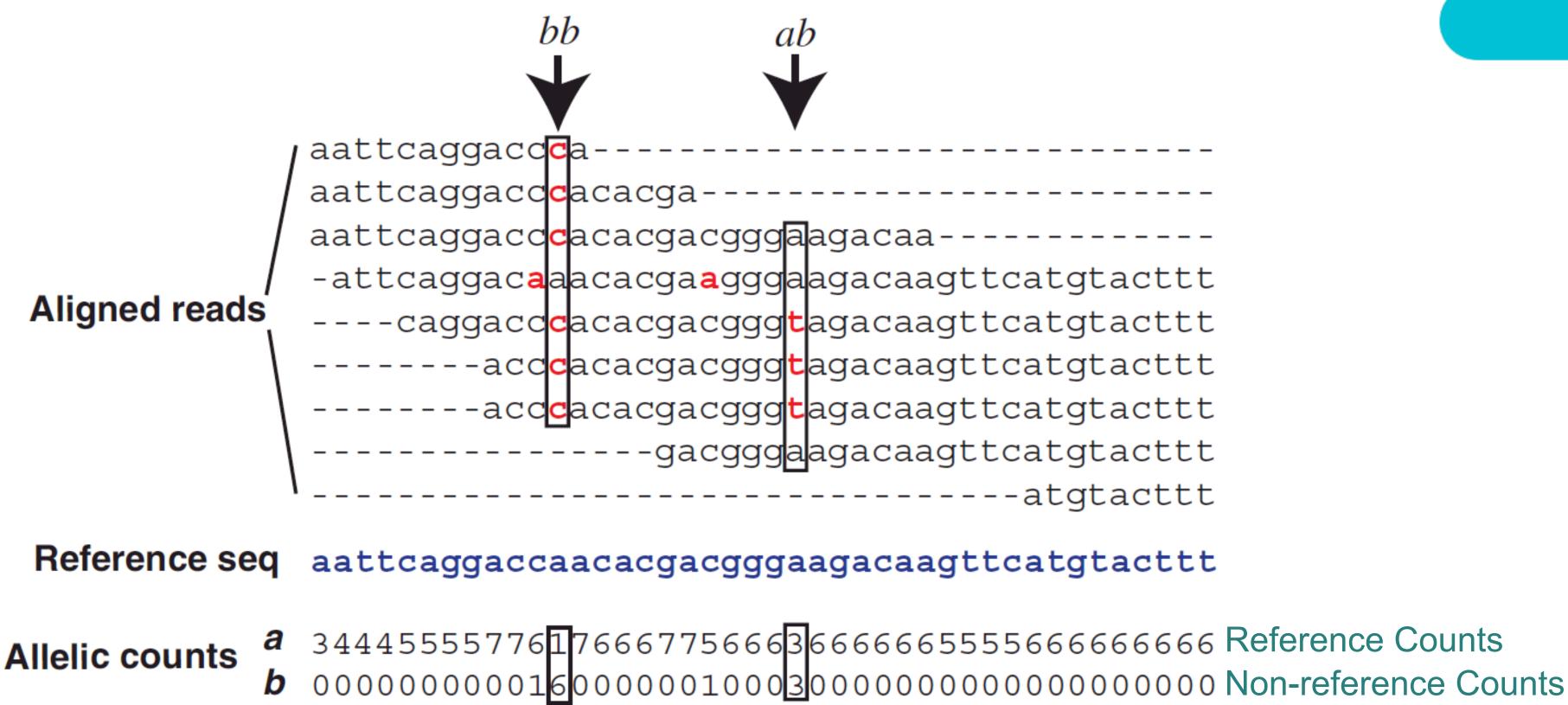
p.V11811

Visual inspection using IGV: Somatic SNVs

- with control (PBMC)



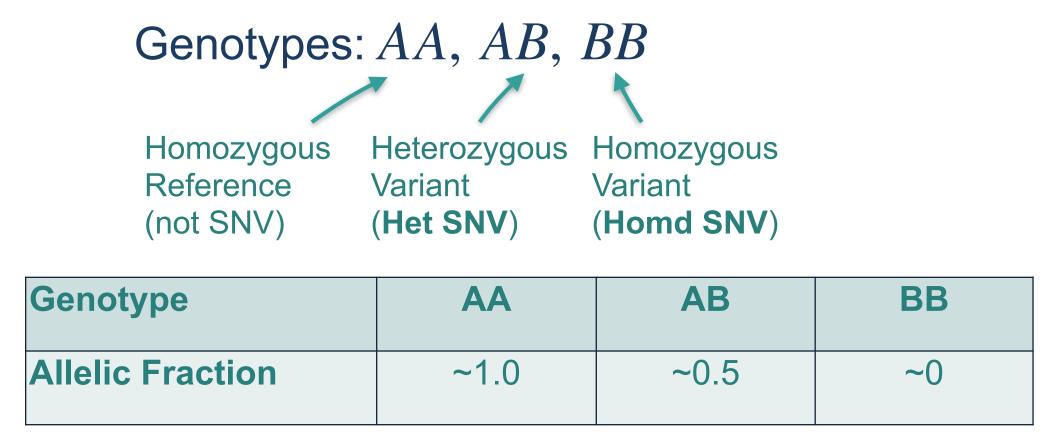
Single Nucleotide Variant (SNV) Calling: Single Sample



- -atgtacttt

SNV Variant Allele Fraction and Genotypes

Variant Allele Fraction (VAF) Analysis



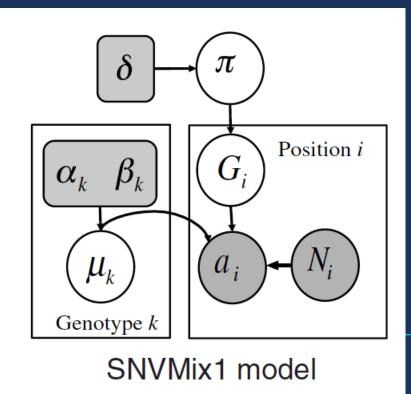
- Allelic Fraction is defined as the fraction of reference reads, $\frac{A}{N}$, where depth N = A + B
- Values in the table are the expected proportions of reference reads for each genotype
- Why might the observed allelic fractions be different than the expected values?

3. Mixture Model for SNV Detection

- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

References:

- Goya et al. **SNVMix**: predicting single nucleotide variants from next-generation sequencing of tumors. *Bioinformatics* **26**:730-36 (2010)
- Roth et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/ tumour paired next-generation sequencing data. *Bioinformatics* 28:907-13 (2012)



Fred Hutchinson Cancer Center

Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

Data

Referees $1, \ldots, T$

For each Referee *i*

- Coin Tosses: N_i
- Count of heads: x_i
- Count of tails: $N_i x_i$

Parameters

Probability to draw coins: π_{fair} , π_{heads} , π_{tails} Probability of heads for 3 types of coins

 $\mu_{fair}, \mu_{heads}, \mu_{tails}$

Responsibilities

Probability that Referee *i* used coin k: $\gamma(Z_i = k)$

Data

Genomic loci 1,..., T For each locus *i*

- Depth (total reads): N_i
- Count of reference reads: x_i
- Count of variant reads: $N_i x_i$

Parameters

<u>Responsibilities</u>

Mutation Calling from Sequencing Data

Probability of genotypes: π_{AA} , π_{AB} , π_{BB} Probability of reference base for 3 genotypes:

$$\mu_{AA}, \ \mu_{AB}, \ \mu_{BB}$$

Probability that locus *i* has genotype k: $\gamma(Z_i = k)$

SNVMix: Probabilistic Model

Sequence Data

There are T different genomic loci with read depths $N = \{1, ..., N_T\}$ and reference base counts $x = \{1, ..., x_T\}$. There are K = 3 different possible genotypes AA, AB, BB

Mixture Model Setup

1. The probabilities for the genotypes are π_{AA} , π_{AB} , π_{BB}

2. Thus, a specific genotype $k \in AA$, AB, BB can be assigned to the latent state Z_i at locus i with these probabilities

$$p(Z_i = k \mid \pi_{1:K}) = \begin{cases} \pi_{AA} \text{ if } k = AA \\ \pi_{AB} \text{ if } k = AB \\ \pi_{BB} \text{ if } k = BB \end{cases}$$

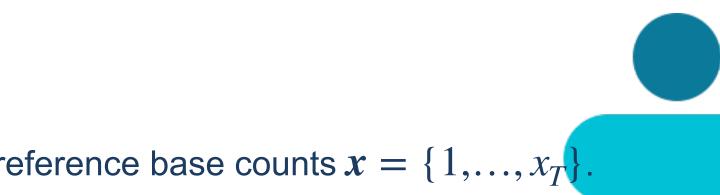
3. The **probability of observing a reference base** for the genotypes are μ_{aa} , μ_{ab} , μ_{bb}

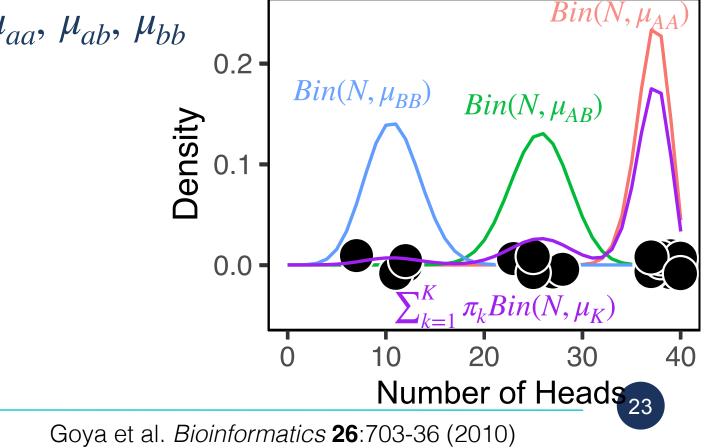
4. The likelihood is a **3-component mixture of binomials**

$$p(x_i | N_i, \mu_{1:K}, \pi_{1:K}) = \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$

5. The **priors** for genotype $k \in \{aa, ab, bb\}$ in the model are $p(\pi_{1\cdot K} | \delta_{1\cdot K}) = Dirichlet(\pi_{1\cdot K} | \delta_{1\cdot K})$ $p(\mu_k | \alpha_k, \beta_k) = Beta(\mu_k | \alpha_k, \beta_k)$

Fred Hutchinson Cancer Center





SNVMix: Inference & parameter estimation using EM (revisited)

E-Step: compute responsibilities

1. What is the probability of locus *i* having genotype *k*?

$$Y(Z_{i} = k) = \frac{\pi_{k}Bin(x_{i} | N_{i}, \mu_{k})}{\sum_{j=1}^{K} \pi_{j}Bin(x_{i} | N_{i}, \mu_{j})}$$

M-Step: update parameters 2. What is the probability of genotype k?

3. What is the probability of observing a reference base for genotype k?

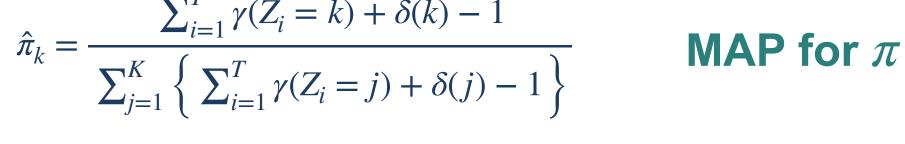
$$\hat{\mu}_{k} = \frac{\sum_{i=1}^{T} \gamma(Z_{i} = k) x_{i} + \alpha_{k} - 1}{\sum_{i=1}^{T} \gamma(Z_{i} = k) N_{i} + \alpha_{k} + \beta_{k} - 2}$$

Evaluate the log likelihood and log posterior: use updated parameters $\log \mathbb{P} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_k Bin(x_i | \hat{\mu}_k, N_i) \right) + \log Dir(\hat{\pi}_k | \delta_k) + \sum_{k=1}^{K} \log Beta(\hat{\mu}_k | \alpha_k, \beta_k)$

Iterate between E-Step and M-Step: stop when $\log \mathbb{P}$ changes less than ϵ compared to previous EM iteration.

Chapter 9 in Bishop (2006). Pattern Section 3.3, 3.4, 11.2 in Murphy (2012). Recognition and Machine Learning. Machine Learning: A Probabilistic Springer Perspective. MIT Press

Fred Hutchinson Cancer Center



MAP for μ

Log posterior

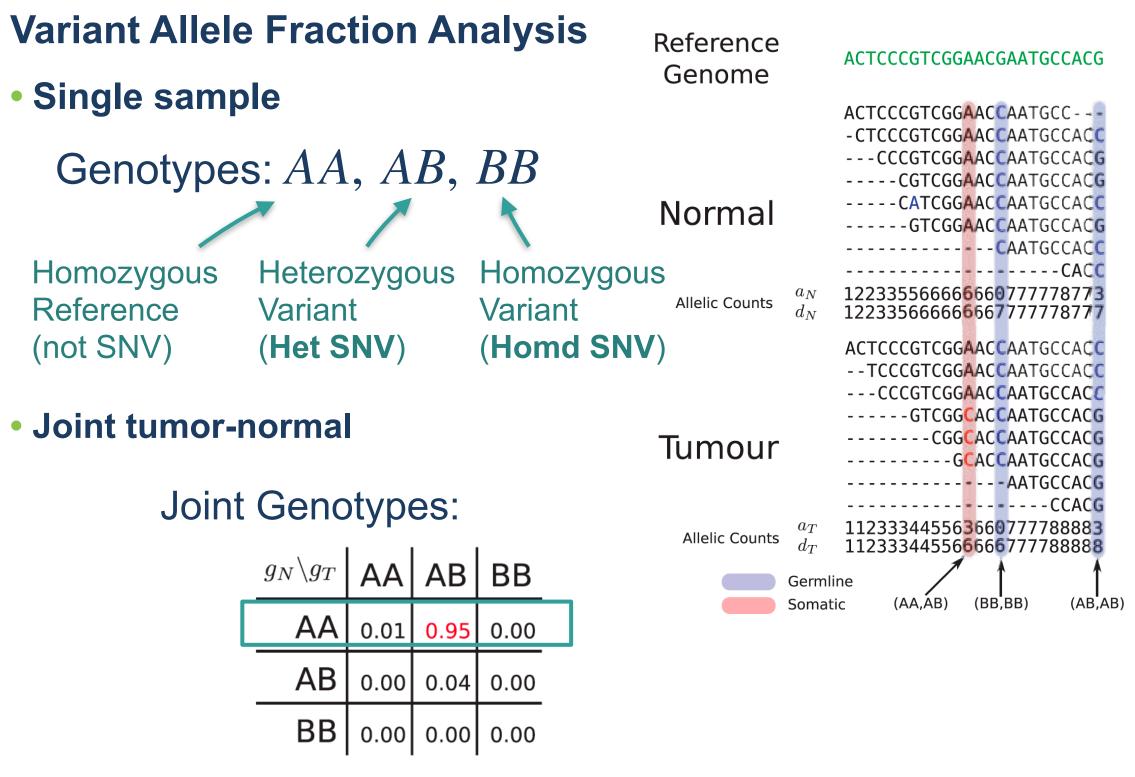
24

SNVMix: Calling somatic SNVs from genotype inference

- To call a variant for each locus i, we can apply a threshold on the responsibilities $\gamma(Z_i)$
- Sum $\gamma(Z_i = AB)$ and $\gamma(Z_i = BB)$ to get the overall probability (either genotype AB or BB) that locus *i* is a variant containing the non-reference allele (B)
- Additional steps required for filtering and determining if variant is somatic vs germline
 - Minimum 3 variant reads $(N_i x_i)$ is typically required
 - Account for mapping and base qualities of sequenced reads (i.e. SNVMix2)
 - Compare locus i in tumor sample to (1) matched normal sample, (2) germline databases

Responsibilities										
Locus	AA	AB	BB							
1	$\gamma(Z_1 = AA)$	$\gamma(Z_1 = AB)$	$\gamma(Z_1 = BB)$							
2	$\gamma(Z_2 = AA)$	$\gamma(Z_2 = AB)$	$\gamma(Z_2 = BB)$							
3	$\gamma(Z_3 = AA)$	$\gamma(Z_3 = AB)$	$\gamma(Z_3 = BB)$							
т	$\gamma(Z_T = AA)$	$\gamma(Z_T = AB)$	$\gamma(Z_T = BB)$							

SNV Genotyping Callers



• Cohort level or panel: Machine Learning (supervised)

Fred Hutchinson Cancer Center

JointSNVMix. Roth et al. *Bioinformatics* **28**:907-13 (2012)

Variant caller	Type of variant	Single-sample mode	Type of core algorithm
BAYSIC [48]	SNV	No	Machine learning (ensemble caller)
CaVEMan [34]	SNV	No	Joint genotype analysis
deepSNV [38]	SNV	No	Allele frequency
EBCall [37]	SNV, indel	No	analysis Allele frequency analysis
FaSD-somatic [31]	SNV	Yes	Joint genotype analysis
FreeBayes [44]	SNV, indel	Yes	Haplotype analysis
HapMuC [42]	SNV, indel	Yes	Haplotype analysis
JointSNVMix2 [30]	SNV	No	Joint genotype analysis
LocHap [43]	SNV, indel	No	Haplotype analysis
LoFreq [36]	SNV, indel	Yes	Allele frequency analysis
LoLoPicker [39]	SNV	No	Allele frequency analysis
MutationSeq [45]	SNV	No	Machine learning
MuSE [40]	SNV	No	Markov chain model
MuTect [35]	SNV	Yes	Allele frequency analysis
SAMtools [8]	SNV, indel	Yes	Joint genotype analysis
Platypus [41]	SNV, indel, SV	Yes	Haplotype analysis
qSNP [24]	SNV	No	Heuristic threshold
RADIA [26]	SNV	No	Heuristic threshold
Seurat [33]	SNV, indel, SV	No	Joint genotype analysis
Shimmer [25]	SNV, indel	No	Heuristic threshold
SNooPer [47]	SNV, indel	Yes	Machine learning
SNVSniffer [32]	SNV, indel	Yes	Joint genotype analysis
SOAPsnv [27]	SNV	No	Heuristic threshold
SomaticSeq [46]	SNV	No	Machine learning (ensemble caller)
SomaticSniper [28]	SNV	No	Joint genotype analysis
Strelka [17]	SNV, indel	No	Allele frequency
	Sivy, muci	NO	analysis
TVC [97]	SNV, indel, SV	Yes	Ion Torrent specific
VarDict [18]	SNV, indel, SV	Yes	Heuristic threshold
VarScan2 [9]	SNV, indel	Yes	Heuristic threshold
Virmid [29]	SNV	No	Joint genotype analysis

Xu. Comput Struct Biotechnol. 16:15-24 (2018)

Somatic SNV Detection using Joint Inference from Tumor-Normal Pairs

Normal, *n*

1.Latent variable state space

- 9 genotype pairs (k_n, k_t)
- $n, t \in \{AA, AB, BB\}$

					Reference Genome	ACTCCCGTCGGAACGAATGCCACG					
	$k_n \setminus k_t$	AA	AB	BB			ΔΩΤΩΩ	алта		TGCC	
	AA	0.01	0.95	0.00						TGCCACC	
	AB	0.00	0.04	0.00			CCC	GTCGG	ACCAA ⁻	TGCCAC <mark>G</mark>	
		0.00	0.04	0.00						TGCCACG	
	BB	0.00	0.00	0.00	Normal			1		TGCCACC	
				I						TGCCACG	
									CAA	TGCCACC	
						a_N				CACC 7778773	
					Allelic Counts	d_N				7778777	
							ACTCC	GTCGG	ACCAA ⁻	TGCCAC <mark>C</mark>	
								0		TGCCACC	
								8		TGCCACC	
										TGCCACG	
					Tumour					TGCCACG	
								· G		TGCCAC <mark>G</mark> TGCCAC <mark>G</mark>	
, μ	$(k_{k_n}^n)Bin($	$(x_i^t \mid l$	V_i^t, μ_i^t	$\left(\frac{t}{r} \right)$						CCACG	
	κ_n	` l •	l * • • •	$\langle t \rangle$		a_T	112333	344556	3660777	7788883	
					Allelic Counts	d_T				7788888	
						Germli	ine	/	1	1	
						Somat		A,AB)	(BB,BB)	(AB, <i>A</i>	AB)
					Roth et al. Bioin	tormati	<i>cs</i> 28 :907	-13 (201	2)		

2. Probability of the genotypes

• 9 mixture weights $\pi_{(k_n,k_t)}$

3.Joint binomial mixture model

9-component mixture model •

 $p(x_i^n, x_i^t | N_i^n, N_i^t, \mu_{1:K}^n, \mu_{1:K}^t) = \sum_{i=1}^K \sum_{k=1}^K \pi_{(k_n, k_t)} Bin(x_i^n | N_i^n, \mu_{1:K}^n)$ $k_{n}=1 k_{t}=1$

• with 9 parameter tuples (μ^n, μ^t)

Homework #7: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.
- Due: May 19th, 2023