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Outline: Probabilistic Methods for Mutation Detection
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1.Primer on statistical modeling (cont’d)

• Mixture models, inference and parameter estimation using the EM algorithm


2.Detecting Mutations in Cancer Genomes

• Visualizing somatic vs germline SNVs

• Sequencing read count data


3.Mixture Models for SNV Detection

• SNV genotyping strategy

• SNVMix probabilistic model and EM inference

• Predicting somatic SNVs in cancer
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1. Primer on statistical modeling (cont’d)
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• Probability 


• Unsupervised learning, probability rules & Bayes’ theorem


• Binomial distribution, Bayesian statistics


• Beta-binomial model example


• Mixture models, EM inference & parameter learning


• References:

• Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 

9780262018029


• Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and 
Statistics). Springer. ISBN: 0387310738
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Mixture Model: Referee example with multiple coins

4

●●●●●●●●●●● ●●●●●0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty

0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty

0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty
Number of Heads

• Recall: There are  different referees who tossed the same coin   times and came up 
with counts of heads .


• Now suppose there are 3 types of coins: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors 
tails denoted as . 


• Each referee draws one coin (with replacement) from a hat containing these coin types mixed together. 

T N = {1,…, NT}
x = {1,…, xT}

{fair, heads, tails}

1 coin type
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Mixture Model: Referee example with multiple coins
• Recall: There are  different referees who tossed the same coin   times and came 

up with counts of heads .

• Now suppose there are 3 types of coins: (1) probably fair, (2) unfairly favors heads, (3) unfairly 

favors tails denoted as . 

• Each referee draws one coin from a hat that contains a bunch of these coin types mixed together. 


1. We don't know the proportion of each coin type in the hat.


2. We don’t know which coin each referee drew from the hat. 


3. We don't know the fairness (probability of heads) for each type of coin.

T N = {1,…, NT}
x = {1,…, xT}

{fair, heads, tails}
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Referee # of tosses 
(N)

# of heads 
(x)

Prop. of 
heads

Type of coin 
used?

Referee 1 40 25 0.63 ?

Referee 2 42 35 0.83 ?

Referee 3 39 27 0.69 ?

Referee 4 xT NT xT/NT ?

Coin Type Proportion 

in hat

Prob. of 
heads

“Fair” ? ?

“Heads” ? ?

“Tails ? ?
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Mixture Model: Latent state model
1. What is the proportion of each coin type in the hat? 

Find the probability for drawing a coin type.


•  is the probability of drawing coin type 


•  are the mixture weights where 


2. Which coin did each referee draw? 

Define the latent variables.

• Let  be the type of coin that referee  draws


•  is called a latent variable and follows a Categorical distribution with parameter 





• The proportions  of the coin types follows a Dirichlet distribution (conjugate prior)


  

πk k ∈ {fair, heads, tails}
π = (πfair, πheads, πtails) ∑K

k=1 πk = 1

Zi = k i
Zi π

p(Zi = k |π1:K) = Cat(Zi = k |π1:K)

=
πfair  if k = fair
πheads if k = heads
πtails  if k = tails

π1:K

p(π1:K |δ1:K) = Dirichlet(π1:K |δ1:K)
6

Section 11.2 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

Chapter 9 in Bishop (2006). Pattern 
Recognition and Machine Learning

Referee
Type of coin 

used?

Referee 1

Referee 2

Referee 3

Referee T

Z1
Z2
Z3
ZT

Coin Type
Proportion 


in hat
Prob. of 
heads

“Fair” ?

“Heads” ?

“Tails ?

πfair
πheads
πtails



Fred Hutchinson Cancer Center

Mixture Model: Likelihood as a mixture of binomials
3. What is the fairness (prob. of heads) for each type of coin? 

Find the probability of heads for each coin type.

• Recall: for a single coin, 

• Define the likelihood for a 3-component mixture of binomials 

with 3 parameters, , one for each type of coin








• Beta prior distribution  


Log Likelihood Function of the Model


  

p(xi |Ni, μ) = Bin(xi |Ni, μ)

μfair, μheads, μtails

p(xi |Zi = k, Ni, μ1:K) = Bin(xi |Ni, μk)

p(xi |Ni, μ1:K, π1:K) =
K

∑
k=1

πkBin(xi |Ni, μk)

p(μk |αk, βk) = Beta(μk |αk, βk)

L(x1:T, N1:T |μ1:K, π1:K) =
T

∏
i=1

K

∑
k=1

πkBin(xi |Ni, μk)

ℓ =
T

∑
i=1

log (
K

∑
k=1

πkBin(xi |Ni, μk))
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Coin Type
Proportion 


in hat
Prob. of 
heads

“Fair”

“Heads”

“Tails

μfair
μheads
μtails

Section 3.3, 3.4, 11.2 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

Chapter 9 in Bishop (2006). Pattern 
Recognition and Machine Learning. 
Springer 

Likelihood function

Log likelihood
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Mixture Model: Inference & parameter estimation using EM (1)

Expectation-Maximization 

Initialize parameters:   and 


E-Step: compute “responsibilities” (inference)

1. Which coin did each referee draw? (Posterior of the latent states  )

• Soft-clustering: Referee  has a probability for using each of the coins.

• Responsibilities: “coin that is responsible for generating observation ” 


M-Step: Update parameters (learning) 

2. What is the proportion of each coin type in the hat? 

3. What is the fairness (prob. of heads) for each coin type? 


Iterate between E-Step and M-Step, 

• check when log-posterior stops increasing.

π1:K μ1:K

γ(Z1:T)
i

xi

π1:K
μ1:K

8

Section 3.3, 3.4, 11.2 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

Chapter 9 in Bishop (2006). Pattern 
Recognition and Machine Learning. 
Springer 
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Referee Fair Coin Heads Coin Tails Coin
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3
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γ(Z1 = F)
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γ(ZT = F)

γ(Z1 = H) γ(Z1 = T )

γ(Z2 = H)

γ(Z3 = H)
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Mixture Model: Inference & parameter estimation using EM (2)
E-Step: compute responsibilities (inference)

1. What is the probability for a referee to draw each coin type?       

     (Posterior of the latent states  )

• Find the responsibilities given the current parameters





 Responsibilities = “coin that is responsible for generating observation ”

• Soft-clustering: Referee  has a probability for using each of the coins.

•  is a matrix of probabilities with dimensions 

Z1:T

p(Zi = k |xi, Ni, π1:K, μ1:K) =
p(xi |Zi = k)p(Zi = k)

p(xi)

=
Bin(xi |Ni, μk)πk

∑K
k′￼=1 Bin(xi |Ni, μk′￼)πk′￼

= γ(Zi = k)

xi
i

γ(Z1:T) T × K
9

Bayes’ Rule

Posterior distribution 

of the latent variables

Responsibility

Referee  and coin i k
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Mixture Model: Inference & parameter estimation using EM (3)
M-Step: Update parameters (learning)

2. What is the proportion of each coin type in the hat? 


 


3. What is the fairness (prob. of heads) for each coin type?


 


Evaluate the log likelihood and log posterior: use updated parameters 


 


Iterate between E-Step and M-Step: 

• Stop EM when new  changes less than  compared to previous EM iteration.

̂πk =
∑T

i=1 γ(Zi = k) + δ(k) − 1

∑K
j=1 ∑T

i=1 {γ(Zi = j) + δ( j) − 1}

̂μk =
∑T

i=1 γ(Zi = k)xi + αk − 1

∑T
i=1 γ(Zi = k)Ni + αk + βk − 2

log ℙ = ∑T
i=1 log (∑K

k=1 ̂πkBin(xi |Ni, ̂μk)) + log Dir( ̂π |δ) + ∑K
k=1 log Beta( ̂μk |αk, βk)

log ℙ ϵ
10

Section 3.3, 3.4, 11.2 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

Chapter 9 in Bishop (2006). Pattern 
Recognition and Machine Learning. 
Springer 

MAP for π

MAP for μ

Log 
posterior Log likelihood Log priors

Conjugate b/t

Categorical & Dirichlet 

distributions

Conjugate b/t

Binomial and Beta 

distributions
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Mixture Model: Inference & parameter estimation using EM (extra slide 1)

Incomplete data log likelihood


 


• The incomplete data log likelihood (plus the priors) is used to monitor EM convergence 


Expected complete data log likelihood


»




• The expected complete data log likelihood in the M-Step is used when updating parameters.

L(x1:T, N1:T |μ1:K, π1:K) =
T

∏
i=1

K

∑
k=1

πkBin(xi |Ni, μk)

L(μ1:K, π1:K |x1:T, Z1:T, N1:T) =
T

∏
i=1

K

∏
k=1

πkBin(xi |Ni, μk)𝕀(Zi=k)

ℓ(μ1:K, π1:K |x1:T, Z1:T, N1:T) =
T

∑
i=1

K

∑
k=1

𝕀(Zi = k){log πk + log Bin(xi |Ni, μk)}

Q = 𝔼 [ℓ(μ1:K, π1:K |x1:T, Z1:T, N1:T)] =
T

∑
i=1

K

∑
k=1

𝔼 [𝕀(Zi = k)] {log πk + log Bin(xi |Ni, μk)}

=
T

∑
i=1

K

∑
k=1

γ(Zi = k){log πk + log Bin(xi |Ni, μk)}

12

Complete data 

likelihood

Complete data 

log likelihood

Expected 

complete data 

log likelihood

Additional definitions for your reference
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Mixture Model: Inference & parameter estimation using EM (extra slide 2)

M-Step: Update the parameters given the responsibilities

 


 


• The object function  is used to obtain the update equations for  and 


, find  and  , find 


EM Convergence: after each iteration, monitor the log posterior


 


• If the log posterior, , stops increasing by , then EM is converged. 

• If not using a Bayesian framework, then use the log likelihood, , to monitor convergence.

p(π1:K, μ1:K) = Dir(π |δ)∏K
k=1 Beta(μk |α, β)

𝒪 = Q + log p(π1:K, μ1:K)

𝒪 π1:K μ1:K

∂𝒪
∂μk

= 0 ̂μk
∂𝒪
∂πk

= 0 ̂πk

ℓ =
T

∑
i=1

log (
K

∑
k=1

πkBin(xi |μk, Ni))
log ℙ(π1:K, μ1:K |x1:T) = ℓ + log p(π1:K, μ1:K)

log ℙ(π1:K, μ1:K |x1:T) ϵ
ℓ

13

Incomplete Data

Log likelihood

Priors

Log posterior

Complete data log likelihood 

+ log priors

Additional definitions for your reference
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2. Detecting Mutations in Cancer Genomes
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DNA
fragmentation

DNA
isolation

Library
construction

Whole Genome

Capture
with Baits

Whole Exome 
or

Targeted Panel

Sequencing

Alignment

Tumor and 
Normal DNA

Tumor Matched Normal

Tumor vs Normal
Computational

Analysis

Genomic
Alteration
Prediction

Mutations
(SNV, INDEL)

Copy Number
Alterations

Structural
Variants

chr1 chr5

chr1 chr5A
A
A
A

A
A
A
C
C
C Gain Deletion
SNV

Rearrangement

Tumor

Normal



Fred Hutchinson Cancer Center

Visual inspection using IGV: Germline SNVs
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Normal 
Sample

Heterozygous SNP with 17 
reads containing the variant 
and having depth 33 reads


17/33 (48%) variant allele 
fraction (VAF)

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

• ~1.5 to 2 million SNPs per individual

• Identify SNPs from normal peripheral 

blood mononuclear cells (PBMC) 

https://software.broadinstitute.org/software/igv
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Visual inspection using IGV: Germline SNVs

Normal 
Sample

Heterozygous SNP with 37 
reads containing the variant 
and having depth 79 reads


37/79 (47%) variant allele 
fraction (VAF)

Tumor 
Sample

Normal 
Sample

Tumor and normal sample 
contain heterozygous SNP

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

• ~1.5 to 2 million SNPs per individual

• Identify SNPs from normal peripheral 

blood mononuclear cells (PBMC) 

16

https://software.broadinstitute.org/software/igv
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Visual inspection using IGV: Somatic SNVs
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Tumor 
Sample

Potential SNV with 
128/342 (37%) VAF


p.V1181I

• Somatic SNV requires comparing case (tumor) 
with control (PBMC)


• On the order of  to  number of mutations10 104
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Visual inspection using IGV: Somatic SNVs

Tumor 
Sample

Potential SNV with 
128/342 (37%) VAF


p.V1181I

Normal sample contains 0/164 
variant reads at SNV

Tumor 
Sample

Normal 
Sample

• Somatic SNV requires comparing case (tumor) 
with control (PBMC)


• On the order of  to  number of mutations10 104

18
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Single Nucleotide Variant (SNV) Calling: Single Sample

19
Goya et al. Bioinformatics 26:703-36 (2010) 

Reference Counts
Non-reference Counts
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SNV Variant Allele Fraction and Genotypes
Variant Allele Fraction (VAF) Analysis


• Allelic Fraction is defined as the fraction of reference reads,  , where depth 


• Values in the table are the expected proportions of reference reads for each genotype


• Why might the observed allelic fractions be different than the expected values?

A
N N = A + B

20

Genotype AA AB BB

Allelic Fraction ~1.0 ~0.5 ~0

Homozygous

Reference 

(not SNV)

Heterozygous

Variant 

(Het SNV)

Homozygous

Variant 

(Homd SNV)

Genotypes:  AA, AB, BB
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3. Mixture Model for SNV Detection
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• SNVMix probabilistic model and EM inference

• Predicting somatic SNVs in cancer


References:


• Goya et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. 
Bioinformatics 26:730-36 (2010)


• Roth et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/
tumour paired next-generation sequencing data. Bioinformatics 28:907-13 (2012)
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Mapping the Referee Example to Mutation Calling 
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Data

Referees 

For each Referee 


• Coin Tosses:  

• Count of heads: 

• Count of tails: 


Parameters

Probability to draw coins: 

Probability of heads for 3 types of coins 




Responsibilities

Probability that Referee  used coin : 

1,…, T
i

Ni
xi

Ni − xi

πfair, πheads, πtails

μfair, μheads, μtails

i k γ(Zi = k)

Data

Genomic loci 

For each locus 


• Depth (total reads):  

• Count of reference reads: 

• Count of variant reads: 


Parameters

Probability of genotypes: 

Probability of reference base for 3 genotypes: 




Responsibilities

Probability that locus  has genotype : 

1,…, T

i

Ni

xi

Ni − xi

πAA, πAB, πBB

μAA, μAB, μBB

i k γ(Zi = k)

Referee Coin Toss Example Mutation Calling from Sequencing Data



Fred Hutchinson Cancer Center

SNVMix: Probabilistic Model
Sequence Data

There are  different genomic loci with read depths   and reference base counts . 

There are  different possible genotypes 


Mixture Model Setup

1.The probabilities for the genotypes are  


2.Thus, a specific genotype  can be assigned to the latent state  at locus  with these probabilities


 


3.The probability of observing a reference base for the genotypes are 


4.The likelihood is a 3-component mixture of binomials





5.The priors for genotype in the model are


 

T N = {1,…, NT} x = {1,…, xT}
K = 3 AA, AB, BB

πAA, πAB, πBB

k ∈ AA, AB, BB Zi i

p(Zi = k |π1:K) =
πAA if k = AA
πAB if k = AB
πBB if k = BB

μaa, μab, μbb

p(xi |Ni, μ1:K, π1:K) =
K

∑
k=1

πkBin(xi |Ni, μk)

k ∈ {aa, ab, bb}
p(π1:K |δ1:K) = Dirichlet(π1:K |δ1:K)
p(μk |αk, βk) = Beta(μk |αk, βk)

23
Goya et al. Bioinformatics 26:703-36 (2010) 
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SNVMix: Inference & parameter estimation using EM (revisited)
E-Step: compute responsibilities


1. What is the probability of locus  having genotype ? 


 


M-Step: update parameters

2. What is the probability of genotype ? 


 


3. What is the probability of observing a reference base for genotype ?


 


Evaluate the log likelihood and log posterior: use updated parameters 

 


Iterate between E-Step and M-Step: stop when  changes less than  compared to previous EM iteration.

i k

γ(Zi = k) =
πkBin(xi |Ni, μk)

∑K
j=1 πjBin(xi |Ni, μj)

k

̂πk =
∑T

i=1 γ(Zi = k) + δ(k) − 1

∑K
j=1 {∑T

i=1 γ(Zi = j) + δ( j) − 1}
k

̂μk =
∑T

i=1 γ(Zi = k)xi + αk − 1

∑T
i=1 γ(Zi = k)Ni + αk + βk − 2

log ℙ = ∑T
i=1 log (∑K

k=1 ̂πkBin(xi | ̂μk, Ni)) + log Dir( ̂πk |δk) + ∑K
k=1 log Beta( ̂μk |αk, βk)

log ℙ ϵ

24
Section 3.3, 3.4, 11.2 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

Chapter 9 in Bishop (2006). Pattern 
Recognition and Machine Learning. 
Springer 

MAP for π

MAP for μ

Responsibilities

Matrix T × K

Log 
posterior
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SNVMix: Calling somatic SNVs from genotype inference

• To call a variant for each locus , we can apply a threshold on the 
responsibilities 


• Sum  and  to get the overall probability (either genotype AB or BB) that locus  is a variant 
containing the non-reference allele (B)


• Additional steps required for filtering and determining if variant is somatic vs germline


• Minimum 3 variant reads ( ) is typically required


• Account for mapping and base qualities of sequenced reads (i.e. SNVMix2)


• Compare locus  in tumor sample to (1) matched normal sample, (2) germline databases

i
γ(Zi)

γ(Zi = AB) γ(Zi = BB) i

Ni − xi

i
25

Responsibilities

Locus AA AB BB

1

2

3

T

γ(Z1 = AA)

γ(Z2 = AA)

γ(Z3 = AA)

γ(Z1 = AB) γ(Z1 = BB)

γ(Z2 = AB)

γ(Z3 = AB)

γ(Z2 = BB)

γ(Z3 = BB)

γ(ZT = AA) γ(ZT = AB) γ(ZT = BB)

Homozygous

Reference 

(not SNV)

Heterozygous

Variant 

(Het SNV)

Homozygous

Variant 

(Homd SNV)

Genotypes:  AA, AB, BB
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SNV Genotyping Callers
Variant Allele Fraction Analysis

• Single sample


• Joint tumor-normal


• Cohort level or panel: Machine Learning (supervised)

26
Xu. Comput Struct Biotechnol. 16:15-24 (2018) JointSNVMix. Roth et al. Bioinformatics 28:907-13 (2012) 

Homozygous

Reference 

(not SNV)

Heterozygous

Variant 

(Het SNV)

Homozygous

Variant 

(Homd SNV)

Genotypes:  AA, AB, BB

Joint Genotypes: 



Fred Hutchinson Cancer Center

Somatic SNV Detection using Joint Inference from Tumor-Normal Pairs

1.Latent variable state space

• 9 genotype pairs 


• 


2.Probability of the genotypes


• 9 mixture weights 


3.Joint binomial mixture model

• 9-component mixture model





• with 9 parameter tuples 

(kn, kt)
n, t ∈ {AA, AB, BB}

π(kn,kt)

p(xn
i , xt

i |Nn
i , Nt

i , μn
1:K, μt

1:K) =
K

∑
kn=1

K

∑
kt=1

π(kn,kt)Bin(xn
i |Nn

i , μn
kn

)Bin(xt
i |Nt

i , μt
kt
)

(μn, μt)
27

Roth et al. Bioinformatics 28:907-13 (2012) 

kn\kt

Normal, n

Tumor, t
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Homework #7: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

• Learn the parameters and infer the genotypes 

• Annotate the mutation status for a set of genomic loci.

• Expected outputs for each question will be provided so that you can check 

your code.

• RStudio Markdown and Python Jupyter Notebook templates provided.


Due: May 19th, 2023

28


