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ABSTRACT

Motivation: Next-generation sequencing (NGS) has enabled whole
genome and transcriptome single nucleotide variant (SNV) discovery
in cancer. NGS produces millions of short sequence reads that, once
aligned to a reference genome sequence, can be interpreted for the
presence of SNVs. Although tools exist for SNV discovery from NGS
data, none are specifically suited to work with data from tumors,
where altered ploidy and tumor cellularity impact the statistical
expectations of SNV discovery.
Results: We developed three implementations of a probabilistic
Binomial mixture model, called SNVMix, designed to infer SNVs
from NGS data from tumors to address this problem. The first
models allelic counts as observations and infers SNVs and model
parameters using an expectation maximization (EM) algorithm and
is therefore capable of adjusting to deviation of allelic frequencies
inherent in genomically unstable tumor genomes. The second models
nucleotide and mapping qualities of the reads by probabilistically
weighting the contribution of a read/nucleotide to the inference of
a SNV based on the confidence we have in the base call and the
read alignment. The third combines filtering out low-quality data in
addition to probabilistic weighting of the qualities. We quantitatively
evaluated these approaches on 16 ovarian cancer RNASeq datasets
with matched genotyping arrays and a human breast cancer genome
sequenced to >40× (haploid) coverage with ground truth data and
show systematically that the SNVMix models outperform competing
approaches.
Availability: Software and data are available at
http://compbio.bccrc.ca
Contact: sshah@bccrc.ca
Supplemantary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

1.1 Single nucleotide variants in cancer
Cancer is a disease of genetic alterations. In particular, single
nucleotide variants (SNVs) present as either germline or somatic
point mutations are essential drivers of tumorigenesis and cellular
proliferation in many human cancer types. The discovery of
germline mutations established important gene functions in cancer;
however, the contribution of single germline alleles to the population
burden of cancer is relatively low. In contrast, determination of
tumorigenic mechanisms has focused on somatic mutations. The
somatic mutational landscape of cancer has to date largely been
derived from small-scale or targeted approaches, leading to the
discovery of genes affected by somatic mutations in many diverse
cancer types. More comprehensive studies using Sanger-based
exon resequencing suggest that the mutational landscape will be
characterized by relative handfuls of frequently mutated genes and
a long tail of infrequent somatic mutations in many genes (Jones
et al., 2008; Stratton et al., 2009).

Considering this, unbiased sequencing surveys of tumor
transcriptomes or genomes are expected to reveal mutations in these
commonly affected cancer genes as well as many novel mutations
in genes with no previous implication in cancer. Next-generation
sequencing (NGS) technology (Shendure and Ji, 2008) has now
emerged as a practical, high-throughput and low-cost sequencing
method enabling the full and rapid interrogation of the genomes
and transcriptomes of individual tumors for mutations. As such,
NGS has presented an unprecedented opportunity for SNV discovery
in cancer. Recent studies involving deeply sequencing the tumor
genomes from acute myeloid leukemia patients (Ley et al., 2008;
Mardis et al., 2009) and a lobular breast cancer patient (Shah et al.,
2009b) have revealed numerous novel somatic mutations in genes
that had not been previously reported to harbor abnormalities. In
addition, sequencing the transcriptomes of ovarian cancers with
RNA-seq (Marioni et al., 2008; Morin et al., 2008; Mortazavi et al.,
2008) led to the discovery of a defining mutation in the FOXL2 gene
(previously not implicated in cancer) in granulosa cell tumors of the
ovary (Shah et al., 2009a).
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Fig. 1. (A) Schematic diagram of input data to SNVMix1. We show how allelic counts (bottom) are derived from aligned reads (top). The reference sequence is
shown indicated in blue. The arrows indicate positions representing SNVs. The non-reference bases are shown in red. (B) Input data for SNVMix2 that consists
of the mapping and base qualities. The darker the background for a read represents a higher quality alignment. The brighter colored nucleotides represent
higher quality base calls. Therefore, high contrast nucleotides are more trustworthy than lower contrast nucleotides. (C) SNVMix1 shown as a probabilistic
graphical model. Circles represent random variables, and rounded squares represent fixed constants. Shaded notes indicate observed data [the allelic counts
and the read depth from (A)]. Unshaded nodes indicate quantities that are inferred during EM. Gi ∈{aa,ab,bb} represents the genotype, Ni ∈{0,1,...,} is the
number of reads and ai ∈{0,1,...,Ni} is the number of reference reads. π is the prior over genotypes and µk is the genotype-specific Binomial parameter
for genotype k. (D) SNVMix2 shown as a probabilistic graphical model. In comparison to SNVMix1, ai is unobserved and we expand the input to consider
read-specific information indexed by j where zi

j =1 indicates that read j is correctly aligned, qi
j is the base quality and ri

j is the mapping quality.

While these early studies have emerged as proof of principle
that novel SNVs can indeed be discovered using NGS, the study
of computational methods for their discovery in cancer is under-
represented in the bioinformatics literature. The analysis of SNVs
from cancer data, where altered ploidy and tumor cellularity impact
the statistical expectations of SNV discovery; and transcriptome
data, where the dynamic range of depth of sequencing is dependent
on highly variable transcript expression present unique challenges.
In this contribution, we describe a new statistical model for
identifying SNVs in NGS data generated from cancer genomes and
transcriptomes. We demonstrate how its novel features outperform
other available methods. Additionally, we provide a ground truth
dataset (with Sanger validated SNVs) and robust accuracy metrics
that will permit future study of computational methods for SNV
detection in cancer genomes.

1.2 NGS data preprocessing for SNV detection
The data produced by NGS consists of millions of short reads
ranging in length from approximately 30–400 nt (although this
is steadily increasing with ongoing technology development).
Here, we focus explicitly on the problem of inferring SNVs
once these reads have been aligned to the genome. Numerous
methods have been developed for short read alignment including
Maq (Li,H. et al., 2008), BowTie (Langmead et al., 2009),
ELAND (Illumina), SHRiMP (Rumble et al., 2009), BWA

(Li and Durbin, 2009), SOAP (Li,R. et al., 2008) and
Mosaik (http://bioinformatics.bc.edu/marthlab/Mosaik). We begin
the discussion by describing two ways of preprocessing aligned data
for input to SNV detection algorithms. The first method is shown in
Figure 1A, where we show an example of aligned data where two
SNVs are identified. The reads are positioned according to their
alignment in the genome and the reference genome sequence is
shown in blue. The first step involves transforming the aligned reads
into allelic counts. This method assumes that the reads are correctly
aligned and the nucleotide base calls are correct. Nucleotides that
match the reference are shown in black, whereas nucleotides that
do not match the reference are shown bolded in red. The figure
illustrates how aligned data can be ‘collapsed’ into allelic counts.
At each position i in the data, we can count the number of reads ai
that match the reference genome and the number of reads bi that
do not match the reference genome. In the case of rare third alleles,
these reads are assumed to be errors. The total number of reads
overlapping each position (called the depth) is given by Ni =ai +bi.
In this context, given {ai,bi,Ni} for all i∈{1,2,...,T} where T is the
total number of positions in the genome, the task is to infer which
positions exhibit an SNV.

The second method (Fig. 1B) relaxes the assumption that the
base calls and the alignments are correct and instead considers two
types of uncertainty related to determining ai and Ni , namely the
uncertainty encoded in the base call qi

j ∈[0,1] which represents the
probability that the stated base is correct for read j∈ (1, ...,Ni)
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at position i; and ri
j ∈[0,1] representing the probability that read

j aligns to its stated position in the genome. Note that although
mapping quality is derived in part from base qualities, considering
these quantities as independent allows us to encode the fact
that base qualities are position specific, while mapping qualities
are constant for all bases in the read. The input data for this
method can be visualized as shown in Figure 1B: high mapping
quality is shown as dark background and high base quality as
bright foreground, high contrast positions indicate positions where
the data are more trustworthy. We show in Section 2.4 how to
explicitly model these uncertainties to perform soft probabilistic
weighting of the data rather than thresholding the uncertainties to
deterministically calculate the allelic counts. We will now describe
how various authors have approached this problem given {ai,bi,Ni}
and optionally, {qi

1:Ni
,ri

1:Ni
}.

1.3 Related work
A simple way to detect SNV locations would be to compute the
fraction fi = ai

Ni
, and then to call as SNVs those locations where fi

is below some threshold. In the example in Figure 1A, applying
threshold of 1

6 would successfully discard all columns (including
the two columns which have singleton non-reference reads, which
may be due to base-calling errors), except the two containing the
SNVs. A critical flaw with this approach is that it ignores the
confidence we have in our estimate of fi. Intuitively, we can trust
our estimate more at locations with greater depth (larger Ni). This
idea has been applied by Morin et al. (2008), wherein read depth
thresholds of Ni ≥6 and bi ≥2 reads supporting the variant allele
were applied, with an additional requirement that the non-reference
allele must be represented by at least 33% of all reads at that
site. This should eliminate SNVs with weak supporting evidence,
but it categorizes the data into two discrete classes—SNV or not,
without explicitly providing confidence estimates on the prediction.
Moreover, in transcriptome data, the number of reads representing a
given transcript expected to be highly variable across all genes and
thus determining a minimum depth can be difficult. We demonstrate
(Section 3) that applying depth-based thresholds reduces sensitivity
to finding real SNVs.

To overcome these limitations, we propose a probabilistic
approach based on a Binomial mixture model, called SNVMix1,
which computes posterior probabilities, providing a measure of
confidence on the SNV predictions. The model infers the underlying
genotype at each location. We assume the genotype to be in
one of three states: aa = homozygous for the reference allele,
ab = heterozygous and bb = homozygous for the non-reference
allele; the latter two genotypes constituting an SNV. In Figure 2,
we show how the posterior probability of each of these three
states increases with more depth, which demonstrates the theoretical
qualities of our approach. Two other approaches: Maq (Li,H. et al.,
2008) and SOAPSNP (Li,R. et al., 2008) have proposed using
Binomial distributions to model genotypes; however, these were
developed in the context of sequencing normal genomes, not cancer
genomes. Both set parameters for the model assuming expected
distributions for normal allelic ratios, and apply post-processing
heuristics to reduce false positives. In our application, we are
interested in cancer genomes and transcriptomes, both of which may
not follow expected distributions due to tumor-normal admixtures
in the sample, within sample tumor heterogeneity, copy number

A B

Fig. 2. (A) Theoretical behavior of SNVmix at depths of 2, 3, 5, 10, 15, 20,
35, 50 and 100. The plots show how the distribution of marginal probabilities
changes with the number of reference alleles given the model parameters fit to
a 10× breast cancer genome dataset. (B) ROC curves from fitting SNVMix2
to synthetic data with increasing levels of certainty in the base call.

changes and other factors. We use the expectation maximization
(EM) algorithm to find a maximum a posteriori (MAP) estimate of
the parameters given some training data, allowing the model to adapt
to genomes and transcriptomes that may deviate from the assumed
distributions for normal genomes and thus model the data more
accurately.

Previous studies have employed stringent thresholding for
removing poor quality bases and/or reads (Ley et al., 2008; Morin
et al., 2008). We propose that this may throw out informative data,
and we extend SNVMix1 to explicitly encode base and mapping
qualities by using them to probabilistically weight the contribution
of each nucleotide to the posterior probability of a SNV call. In
addition, we explore how to optimally combine thresholding and
probabilistic weighting in order to obtain more accurate results. We
show (Section 3) how this extended model, which we call SNVMix2,
confers an increased specificity in our predictions.

The statistical models we propose in this contribution provide
posterior probabilities on SNV predictions, removing the need for
depth thresholds and use an EM learning algorithm to fit the model
to data removing the need to set model parameters by hand. We
also show how to explicitly model base and mapping qualities, and
explore how quality thresholds can be used in combination with
probabilistic weighting. We show that these attributes of the model
result in increased accuracy compared with Maq’s SNV caller and
depth threshold-based methods. We evaluate the model based on
real data derived from 16 ovarian cancer transcriptomes sequenced
using NGS, and a lobular breast cancer genome sequenced to >40x
coverage (Shah et al., 2009b). For all cases, we obtained high-
density genotyping array data for orthogonal comparisons. Finally,
we demonstrate results on 497 positions from the breast cancer
genome that were subjected to Sanger sequencing and thus constitute
a ‘ground truth’ dataset for benchmarking.

2 METHODS

2.1 SNVMix model specification
SNVMix1 is shown as a probabilistic graphical model in Figure 1C. The
conditional probability distributions for the model are given in Figure 3
and the description of all random variables is listed in Table 1. The input is
composed of allelic counts from aligned data and the output of inference is the
predicted genotypes. Consider Gi =k, k ∈{aa,ab,bb}, to be a Multinomial
random variable representing the genotype at nucleotide position i, where
aa is homozygous for the reference allele, ab is heterozygous and bb is
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homozygous for the non-reference allele. At each position, we have an
observed number of aligned reads Ni. We let ai

j ∈{0,1} represent whether
or not read j∈{1,...,Ni} matches the reference at position i. We let ai (no j
index) be the total number of reads that match the reference at i. We assume
the following likelihood model for the data:

p(ai|Gi =k,Ni,µ1:3)∼Binom(ai|µk,Ni) (1)

where µk is the parameter of a Binomial distribution for genotype k. µk

models the expectation that for a given genotype k, a randomly sampled
allele will be the reference allele. Intuitively, we should expect µaa to be
close to 1, µab to be close to 0.5 and µbb to be close to 0. Thus, the key
intuition is that for genotype k =aa, the Binomial distribution defined by
µaa should be highly skewed toward the reference allele. Similarly, µbb

would be skewed toward the non-reference allele. For µab, the distribution
would be much more uniform. We impose a prior on the genotypes, Gi|π∼
Multinomial(Gi|π,1) where π(k) is the prior probability of genotype k. Given
knowledge of all the parameters, θ= (µ1:3,π), we can use Bayes’ rule to infer
the posterior over genotypes, γi(k)=p(G=k|ai,Ni,θ), where:

γi(k)= πkBinom(ai|µk,Ni)∑K
j=1πjBinom(ai|µj,Ni)

(2)

Our approach to inference involves learning the parameters θ by fitting the
model to training data using MAP EM (see below). We demonstrate that this
produces better results than Maq, which uses fixed parameters (Section 3).

p(π|δ) = Dir(π|δ)

p(Gi|π) = Multinomial(Gi|π,1)

p(ai
j|Gi =k,µk) = Bern(ai

j|µk)

p(ai|Gi =k,µk,Ni) = Binom(ai|µk,Ni)

p(µk |αk,βk) = Gam(µk |αk,βk)

p(zi
j) = Bern(zi

j |0.5)

p(qi
j|ai

j,z
i
j) =

⎧⎪⎨
⎪⎩

qi
j if ai

j =1,zi
j =1

1−qi
j if ai

j =0,zi
j =1

0.5 if zi
j =0

p(ri
j |zi

j) =
{

ri
j if zi

j =1

1−ri
j if zi

j =0

Fig. 3. Conditional probability distributions of SNVMix model.

2.2 Prior distributions
We assume that π is distributed according to a Dirichlet distribution
parameterized by δ, the so-called pseudocounts. We set δ to be skewed toward
πaa assuming that most positions will be homozygous for the reference
allele. µk is conjugately distributed according to a Beta distribution: µk ∼
Beta(µk |αk,βk). We set αaa =1000,βaa =1; αab =500,βab =500 and αbb =
1,βbb =1000 assuming that µaa should be skewed towards 1, µab should be
close to 0.5 and µbb should be close to 0.

2.3 Model fitting and parameter estimation
We fit the model using the EM algorithm. We initialize µk and π(k) to
their prior means. The EM algorithm iterates between the E-step where we
assign the genotypes using Equation 2 and the M-step where we re-estimate
the model parameters. At each iteration, we evaluate the complete data log-
posterior and the algorithm terminates when this quantity no longer increases.
The M-step equations are standard conjugate updating equations:

πnew(k)=
∑T

i=1 I(Gi =k)+δ(k)∑
j

∑T
i=1 I(Gi = j)+δ(j)

(3)

where I(Gi =k) is an indicator function to signal that Gi is assigned to state
k at position i, and:

µnew
k =

∑T
i=1 aI(Gi=k)

i +αk −1∑T
i=1 N I(Gi=k)

i +αk +βk −2
(4)

2.4 Modeling base and mapping qualities
The model shown in Figure 1C assumes that ai

j is observed (it is a shaded
node in the graph), and thus assumed correct. However, each nucleotide’s
contribution to the allelic counts has uncertainty associated with it in the
form of base and mapping qualities. We propose a soft (or probabilistic)
weighting scheme, which will down-weight the influence of low-quality base
and mapping calls, but not discard them altogether. To model this, we change
ai

j to be an unobserved quantity as shown in Figure 1D, and instead observe
the soft evidence on them in the form of probabilities, which we represent
by the observed base qualities qi

j ∈[0,1]. Similarly, we introduce unobserved

binary random variables zi
j ∈{0,1} representing whether read j is correctly

aligned, and soft evidence in the form of probabilities which we represent
by the observed mapping qualities ri

j ∈[0,1]. The conditional probability

distributions for p(qi
j |ai

j,z
i
j) and p(ri

j |zi
j) are given in Figure 3. Thus, the input

data is now q1:T ,r1:T and the corresponding likelihood for each location i

Table 1. Description of random variables in SNVMix1 and SNVMix2

Parameter Description Value

δ Dirichlet prior on π (1000,100,100)
π Multinomial distribution over genotypes Estimated by EM (M-step)
Gi Genotype at position i Estimated by EM (E-step)
ai

j Indicates whether read j at position i matches the reference Observed in SNVMix1, latent in SNVMix2
zi

j Indicates whether read j aligns to its stated position Latent
qi

j Probability that base call is correct Observed (SNVMix2 only)
ri

j Probability that alignment is correct Observed (SNVMix2 only)
µk Parameter of the Binomial for genotype k Estimated by EM (M-step)
α Shape parameter of Beta prior on µ (1000,500,1)
β Scale parameter of Beta prior on µ (1,500,1000)
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can be obtained by marginalizing out a,z as follows:

p(qi
1:Ni

,ri
1:Ni

|Gi =k,µk) (5)

=
Ni∏

j=1

∑
a

∑
z

p(ai
j|Gi,µ)p(qi

j |ai
j,z

i
j)p(zi

j |ri
j )p(zi

j) (6)

∝
Ni∏

j=1

0.5(1−ri
j )+ri

j [(1−qi
j)(1−µk)+qi

jµk] (7)

As before, given the model parameters µ,π, we can infer the genotype at
each position by modifying Equation (2) as follows:

γi(k)= πkp(qi
1:Ni

,ri
1:Ni

|Gi =k,µk)∑K
h=1πhp(qi

1:Ni
,ri

1:Ni
|Gi =h,µh)

(8)

The updating equations are unchanged in the M-step of EM. The model-
fitting algorithm changes only in the E-step by using Equation (8) instead of
Equation (2). We have specified how to encode base and mapping uncertainty
into the model, obviating the need for thresholding these quantities. We call
this version of the model SNVMix2.

In Figure 2, we show the theoretical behavior of this model using simulated
data with varying base qualities. The model performs equally well for
datasets where the mean certainty of the base calls is ∼80% and higher. This
suggests that thresholding base calls at Phred Q20 [99% certainty (Morin
et al., 2008)] or Q30 [99.9% certainty (Ley et al., 2008)] may be overly
stringent.

2.5 Implementation and running time
The model and inference algorithm is implemented in C and supports
both SAMtools (Li et al., 2009) and Maq pileup format. Running EM
(SNVMix2) on 14 649 positions for the 40× breast cancer genome took
36 s. Predicting genotypes for the whole 40× genome took 11 min and 38 s.
(The Maq step cns2snp took 19 min and 9 s.) A script to choose optimal base
and mapping quality thresholds, given ground truth [or orthogonal single
nucleotide polymorphism (SNP) array] data, is provided in the software
package.

2.6 Datasets
We used three datasets to evaluate our models. The first (Supplementary
Dataset 1A and B) consists of 16 ovarian cancer transcriptomes sequenced
using the Illumina GA II platform, RNA-Seq paired end protocol. (Note
that this data has been generated as part of an ongoing study to profile
ovarian carcinoma subtypes, and the full datasets will be available as part
of forthcoming manuscripts. However, all SNV data referenced in this
manuscript is available as Supplementary Materials). For each of these cases,
we obtained Affymetrix SNP 6.0 high-density genotyping arrays from the
corresponding DNA. We examined coding positions in the transcriptome data
for which there was a corresponding high-confidence (>0.99) genotyping
call from the array predicted using the CRLMM algorithm (Lin et al., 2008).
This resulted in an average of approximately 9000 positions from each
case and a total of 144 271 positions. These data were used in the cross-
validation experiment, described below. The second dataset (Supplementary
Dataset 2A–D) consisted of 497 positions from a lobular breast tumor
genome predicted as SNVs using SNVMix1 model from data generated
using the Illumina GA II platform. These positions were predicted to be
non-synonymous protein-coding changes and were subsequently sequenced
using Sanger capillary-based technology. Of these, 305 were confirmed as
SNVs and 192 were not confirmed. These 497 positions were considered as
the ground truth dataset used for sensitivity and specificity calculations. In
addition, we also generated Affymetrix SNP 6.0 array data for this case and
considered 14 649 positions (Supplementary Dataset 3A–D) that matched
the coding positions and CRLMM prediction criteria outlined above. All
NGS data were aligned to the human genome reference (NCBI build 36.1)
using Maq’s map tool (v0.6.8). Thus, for all comparisons between Maq and
SNVMix, we used the same baseline set of aligned data.

2.7 Accuracy metrics
While comparing with the SNP array data, we defined a true positive (TP)
SNV as an ab or bb CRLMM genotype. A true negative (TN) SNV was
defined as an aa genotype from the SNP array. For the Sanger validated
positions, a TP was an SNV that was confirmed by Sanger sequencing,
whereas a TN was a position that was not confirmed. To evaluate our models
against these data, we computed p(SNVi)=γi(ab)+γi(bb) and standard
receiver operator characteristic (ROC) curves. The area under the ROC curve
(AUC) was computed as a single numeric metric of accuracy that effectively
measures the trade-off between sensitivity and specificity. As an additional
measure, we computed the F-statistic: f = 2(precision×recall)

precision+recall , where precision
is measured as the proportion of predictions that were true and recall is the
proportion of true SNVs that were predicted.

2.8 Benchmarking experiments
To evaluate the effect of estimating parameters, we designed a 4-fold
cross-validation study. We permuted the 144 271 positions with matched
array-based genotype data from the ovarian cancer data, and divided the
positions into four equal parts. We fit the model to three parts (training
data) using EM and used the converged parameters to calculate p(SNVi) for
each of the remaining positions (test data). We repeated this 10 times and
computed the AUC for each of the 16 cases. We also computed AUC from
the results predicted by Maq v0.6.8 and compared the AUC distributions
across the 16 cases to SNVMix1 and SNVMix2. These data also allowed
us to determine the range of converged parameter estimates across the folds
and 10 replicates. We also tested the effect of depth-based thresholding by
running SNVMix1 on the 14 649 positions from the breast cancer genome.
To simulate the thresholding, we set p(SNVi)=0 at locations where Ni was
below some threshold, chosen from the set {0,1,...,7,10}. We compared
SNVMix1, SNVMix2 and Maq on this data as well. Finally, we evaluated
the true positive rate (TPR) and false positive rate (FPR) on the 497 ground
truth positions from this case for SNVMix1, SNVMix2 and Maq.

3 RESULTS

3.1 Depth heuristics reduce sensitivity
We first determined the effect that depth thresholding had on 14 649
positions probed using an Affymetrix SNP 6.0 array from genome
data from the lobular breast cancer by calculating ROC curves and
corresponding AUC values (Section 2) from the output of SNVMix1
at different cutoff values. The most accurate results were obtained
when no depth thresholding was applied. At a threshold of 0, the
AUC was 0.988 (the highest) and at a threshold of 10 reads, the
AUC was 0.614 (the lowest). At a FPR of 0.01, the TPR decreased
with increasing number of reads required for the threshold without
exception, suggesting that depth-thresholding under the SNVMix1
model reduces overall sensitivity without increasing specificity, and
should therefore be avoided. AUC for thresholds of 1, 3, 5 and 7
reads were 0.971, 0.893, 0.782 and 0.707, respectively.

3.2 Estimating parameters in transcriptome data by
model fitting confers better accuracy

Figure 4 shows the AUC distribution over 16 ovarian cancer
transcriptomes (Section 2) for the best and worst cross-
validation runs of SNVMix2 and SNVMix1 as well as the
results from the Maq SNV caller with the two recommended
settings of the r parameter (0.001 and 0.02). Both runs of
SNVMix1 were statistically significantly better than the Maq
runs [analysis of variance (ANOVA) test, P <0.0001], with
mean AUC of 0.9557±0.0100 and 0.9552±0.0100, compared
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with 0.9290±0.0120 and 0.9032±0.0119 for the Maq runs.
Furthermore, SNVMix2 without quality thresholds offers a
slight performance improvement over SNVMix1. Although the
improvement of SNVMix2 over SNVMix1 is not statistically
significant, it is noteworthy that no thresholds of any kind were
applied to the data and thus probabilistic weighting can eliminate
the need for arbitrarily thresholding the data (see below).

3.3 Evaluation of models on a deeply sequenced breast
cancer genome with ground truth SNVs

We evaluated performance of the models on a lobular breast cancer
sample sequenced to >40× haploid coverage (Shah et al., 2009b).
In addition, we compared results obtained from the same genome
at 10× coverage. We first trained the model using 14 649 protein
coding positions for which we generated matching Affymetrix
SNP6.0 calls. We computed the AUC for SNVMix1, SNVMix2
and Maq. Table 2 shows that the highest AUCs were obtained
with SNVMix2 on the 40× genome, followed by SNVMix2 on
10× genome (AUCs of 0.9929 and 0.9905, respectively). Both
of these were higher than results achieved for SNVMix1 (AUC

SNVMix2 SNVMix1 Maq

Fig. 4. Distribution of AUC over 16 ovarian cancer transcriptomes
comparing accuracy of SNV detection for two Maq runs, the best and worst
SNVMix1 runs in the cross-validation experiment (middle) and best and
worst runs for SNVMix2 (mbQ0 = no quality thresholding, MbQ30 = keeping
only reads with mapping qualities > Q30). SNVMix1 and SNVMix2 runs
were statistically more accurate than both Maq runs (ANOVA, P < 0.0001).
SNVMix2 runs were better than SNVMix1, but not statistically significantly.

of 0.9880) and Maq (0.9824 for 40× and 0.9115 for 10×—both
for the r = 0.001 parameter setting). After fitting the model to the
14 649 positions, we evaluated the performance using 497 candidate
mutations originally detected using SNVMix1 at 10×, which were
validated using Sanger amplicon sequencing (Section 2). These
consisted of 305 true SNVs (variants seen in the Sanger traces)
and 192 that could not be confirmed in the Sanger traces. Table 2
shows the sensitivity, precision and F-measure results of SNVMix2,
SNVMix1 and SNVMix2 combined with base and mapping quality
thresholding at both 10× and 40× coverage at a p(SNV) (Section 2)
threshold determined using a FPR ≤ 0.01. We did not include a
comparison to Maq at these 497 positions since the results would be
biased toward the SNVMix1 model that led us to identify them in
the first place. SNVMix2 and SNVMix1 showed similar F-measure
at both 10× and 40× reinforcing that the probabilistic weighting
confers equal accuracy without having to select arbitrary quality
thresholds. In addition, both SNVMix2 and SNVMix1 had higher
accuracy at 40× and 10× (Table 2). Interestingly, all the models had
increased false negative rates in the 40× genome in comparison with
the 10× genome. Upon further review of the SNVMix2 positions
predicted at 10×, but not at 40×, we examined that the majority
(9 out of 13) were marginally below threshold and significant
probability mass was indeed on the P(ab) state (>0.99) and would
have been predicted with even a slightly less stringent threshold.
Three out of the remaining four appear to be the result of DNA copy
number amplifications that are skewing the allelic ratios involved.
We elaborate on this point in Section 4.

While the SNVMix2 model eliminates the need for thresholding
through probabilistic weighting, we explored the effect of applying
thresholds to the SNVMix2 input in order to identify a practical
balance between pure weighting and thresholding. We compared the
results of thresholding mapping qualities at (Q0, Q5, Q10, Q20, Q30,
Q40 and Q50) and concomitantly thresholding base qualities at (Q0,
Q5, Q10, Q15, Q20 and Q25) and running SNVMix2 on the resulting
data from both 10× and 40× genomes. As shown in Table 2,
thresholding the mapping qualities at Q50 and base qualities at Q20
(mQ50_bQ20) at 10× performed better than all other 10× runs
(F-measure 0.8441). For the 40× data, thresholding the mapping
qualities at Q50 and base qualities at Q15 (mQ50_bQ15) performed
best over all runs (F-measure 0.8658). (See Supplementary Table S1
for all results from runs in increments of Q1 base quality thresholds.)
This suggests that previously reported base quality thresholds may
be too stringent. Furthermore, when used with stringent mapping
quality thresholds, the SNVMix2 model can effectively use the base
qualities by probabilistic weighting to confer higher accuracy. These
results indicate that treating mapping and base qualities separately

Table 2. Comparison of accuracy of SNVMix1, SNVMix2 and SNVMix combined with base and mapping quality thresholding

Model Run Train AUC TP FP TN FN Sens Prec F-measure

SNVMix1
10× 0.9880 305 192 0 0 1.0000 0.6137 0.7606
40× 0.9924 293 107 85 12 0.9607 0.7325 0.8312

SNVMix2
10× 0.9905 299 162 30 6 0.9803 0.6486 0.7807
40× 0.9929 290 107 85 15 0.9508 0.7305 0.8262

SNVMix2 + thresholding
mQ50_bQ20 (10×) 0.9882 287 88 104 18 0.9410 0.7653 0.8441
mQ50_bQ15 (40×) 0.9928 287 71 121 18 0.9410 0.8017 0.8658
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as opposed to taking a minimum over the two (as in Maq) has
advantages.

4 DISCUSSION
We have described two statistical models based on Binomial mixture
models to infer SNVs from aligned NGS data obtained from tumors.
We demonstrated that a probabilistic approach to modeling allelic
counts obviates the need for depth-based thresholding of the data,
and how fitting the model to real data to estimate parameters
is superior to Maq, which uses fixed parameter settings on the
assumption that the data come from a normal human genome. In
addition, we extended the basic Binomial mixture to model mapping
and base qualities by using a probabilistic weighting technique.
This eliminates the need to employ arbitrary thresholds on base and
mapping qualities and instead lets the model determine the strength
of contribution of each read to the inference of the genotype. Finally,
we showed that even further gains in accuracy can be obtained by
combining moderate thresholding and probabilistic weighting of the
base and mapping qualities. Importantly, gains in accuracy by the
SNVMix models were shown in both transcriptome and genome
data.

4.1 Dependence on alignments
Our results will be highly dependent on the accuracy of alignments
as well as the consistency and accuracy of mapping qualities reported
by the aligner. Results in Table 2 showed that the combined approach
of stringent thresholding on mapping quality and modeling the
uncertainty of the remaining reads gave the highest accuracy. Given
that the most gain was obtained in precision, it suggests that false
positive predictions may indeed be reduced with more accurate
alignments. As read lengths increase with technology development
and mapping algorithms improve, we expect that the input to
SNVMix will be of higher quality, which should yield more accurate
results. Moreover, alignment using Maq presents a drawback with
regard to SNVMix2’s model. When a short read can be aligned
to more than one position in the genome with the same mapping
quality, this read is dropped, being assigned a mapping quality of
zero. SNVMix2’s design would be able to leverage the read’s quality
amongst the distinct coordinates and still use the information it
conveys to predict SNVs. The performance of this will be evaluated
in future work.

4.2 Limitations, extensions and future work
As stated earlier, a major objective in cancer genome sequencing
is to discover somatic mutations. If sequence data from tumor and
normal DNA from the same patient is available, candidate somatic
mutations can be identified as positions for which p(SNV) is high
in the tumor and 1−p(SNV) is high in the normal data. If only
tumour data is available, we recommend filtering against dbSNP
and performing targeted validation on the remaining positions in
both tumor and normal DNA as described previously (Shah et al.,
2009b). Moreover, the models we have presented assume identically
and independently distributed genotypes. As such, the common prior
over genotypes π can be indexed by position (i.e. πi) and thus could
encode information about what variants are known for each position
i in the genome.

We noticed that some positions missed by SNVMix1 at 40× were
in what we believe are allele-specific copy number amplifications.
Future work will involve incorporating copy number data directly
into the model to consider such situations where the resultant allelic
bias is expected to mask variants present in the unamplified allele.
These results will be presented in a forthcoming manuscript. In
a similar vein, due to regulatory mutations or epigenetic changes,
transcriptomes can show preferential expression of one allele and
thus our model will be insensitive to instances of extensively skewed
allelic expression. Further extensions of the model to consider these
factors will be explored.

Finally, we recently demonstrated that intra-tumor heterogeneity
can be seen using ultra-deep targeted sequencing (Shah et al.,
2009b). The allelic frequencies of SNVs in rare clones in the
tumor population will likely result in false negative predictions at
conventional sequencing depths (i.e. between 20× and 40×), and
confound the estimation of the false negative rates of prediction.
Future investigation of all of these problems will be necessary if the
goal of sequencing studies is to characterize all mutations present
in the heterogeneous mixture of genomes that make up a tumor.
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