GANGER GENOMICS

GENOME 541

Spring 2020

Gavin $\mathrm{Ha}, \mathrm{Ph} . \mathrm{D}$.
Public Health Sciences Division Human Biology Division
(1)
@GavinHa
gha@fredhutch.org
(T) https://github.com/GavinHaLab

GavinHaLab.org

Outline

1. Detecting Copy Number Alterations in Cancer Genomes

- Predicting copy number features from sequence data
- Copy number analysis workflow
- Data normalization

2. Continuous Hidden Markov Model (HMM)

- Graphical model representation
- Components of a continuous HMM
- Inference \& parameter estimation using expectation-maximization (EM)

3. Copy Number Profiling using a Hidden Markov Model

- Probabilistic model for copy number analysis
- Predicting copy number segments using the Viterbi algorithm

1. Detecting Copy Number Alterations in Cancer Genomes

Predicting genomic alterations from sequence data

Predicting genomic alterations from sequence data

Tumor DNA Copy Number Analysis Strategy

1. Using sequencing read coverage as a measure for DNA copy number
2. Identifying segments of coverage changes
3. Predicting the number of copies for each segment

Chromosome 3

Cancer Genome Copy Number Analysis Workflow

Copy Number Segmentation \& Prediction

Copy Number Analysis Workflow: Normalization

1. Correct GC/mappability biases for tumor read depth

Copy Number Analysis Workflow: GC content bias

Copy Number Analysis Workflow: GC correction (1)

1. Randomly select 50k bins and filter outliers (bottom \& top 1\%)
2. Fit loess () curve

- local nonlinear regression
- smoothing parameter (bandwidth): amount of local data to fit

3. corrected read count $=\frac{\text { observed read count }(\text { blue dot })}{\text { expected read count }(\text { red line })}$

- relative differences between observed and predicted read counts

Benjamini and Speed. Nucleic Acids Research 40:e72-86 (2012)
Boeva et al. Bioinformatics 29(3):423-5 (2012)
Ha et al. Genome Research 22:1995-2007 (2012).
Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017) 10

Copy Number Analysis Workflow: GC correction (2)

Un-corrected read counts

GC-corrected read counts

Benjamini and Speed. Nucleic Acids Research 40:e72-86 (2012)

Copy Number Analysis Workflow: Normalization

1. Correct GC/mappability biases for tumor read depth

$$
\begin{aligned}
N^{\text {normal }} & =\text { normal read depth } \\
N^{\text {tumor }} & =\text { tumor read depth } \\
\hat{N}^{\text {normal }} & =\text { corrected normal read depth } \\
\hat{N}^{\text {tumor }} & =\text { corrected tumor read depth }
\end{aligned}
$$

$$
\log _{2}\left(\frac{\hat{N}^{\text {tumor }}}{\hat{N}^{\text {normal }}}\right)=\text { corrected log ratio }
$$

2. Perform segmentation and copy number prediction

Input Sequencing Data for Copy Number Analysis

Input Data After Normalization

- GC-content bias correction applied to separately for
- tumor sample reads $N_{1: T}^{\text {Tumor }}$
- normal sample reads $N_{1: T}^{\text {Normal }}$

- Normalize tumor corrected read counts $\hat{N}_{i}^{\text {Tumor }}$ with normal corrected read counts $\hat{N}_{i}^{\text {Normal }}$ to obtain the log ratio for bin $t \in\{1, \ldots, T\}$

$$
x_{t}=\log _{2}\left(\frac{\hat{N}_{t}^{\text {Tumor }}}{\hat{N}_{t}^{\text {Normal }}}\right)
$$

Copy Number Segmentation and Prediction

- What are the genomic segments of copy number alterations?
- What is the copy number value for each segment?
- How do we account for variability/noise in the data?

Continuous hidden Markov model (HMM)

2. Continuous hidden Markov model

- Hidden Markov Models vs Mixture Models
- Components of a Continuous HMM
- Inference and Parameter Learning using EM

Probabilistic Graphical Model for HMMs

From Mixture Models to Hidden Markov Models

- Mixture model for iid data is a special case of the HMM

Mixture Model

$$
p\left(x_{1: T}, Z_{1: T}\right)=p\left(Z_{1: T}\right) p\left(x_{1: T} \mid Z_{1: T}\right)
$$

$p\left(x_{1: T}, Z_{1: T} \mid \boldsymbol{\theta}\right)=\left[\prod_{t=1}^{T} p\left(Z_{t} \mid \boldsymbol{\pi}\right)\right] \prod_{t=1}^{T} p\left(x_{t} \mid Z_{t}, \boldsymbol{\phi}\right)$

$$
\boldsymbol{\theta}=\{\boldsymbol{\pi}, \boldsymbol{\phi}\}
$$ Joint Probability Distribution (Complete data likelihood)

$x_{1: T}$ observed data
$Z_{1: T}$ latent variables
π mixture weights
$\boldsymbol{\phi}$ observation parameters
aifif FRED HUTCH
(2)

Gaussian Mixture Model for Log Ratio Data

The ratios $\frac{\hat{r}_{t}^{\text {Tumor }}}{\hat{r}_{t}^{\text {Normal }}}$, for all t loci are log-normal distributed, so the log ratios $x_{1: T}$ follow a normal distribution.

The Gaussian Distribution

Let X be a continuous measurement with mean μ and variance σ^{2}, then X has a Gaussian distribution,

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text { or } p(X=x)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \text { where }
$$

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

Gaussian Mixture Model for Log Ratio Data

The ratios $\frac{\hat{r}_{t}^{\text {Tumor }}}{\hat{r}_{t}^{\text {Normal }}}$, for all t loci are log-normal distributed, so the log ratios $x_{1: T}$ follow a normal distribution.

The Gaussian Mixture Model

Define a likelihood for a \boldsymbol{K}-component mixture of Gaussians with means $\boldsymbol{\mu}=\left\{\mu_{1}, \ldots, \mu_{K}\right\}$ and variance $\boldsymbol{\sigma}^{\mathbf{2}}=\left\{\sigma_{1}^{2}, \ldots, \sigma_{K}^{2}\right\}$, where the observation model is a conditional Gaussian

$$
p\left(x_{t} \mid Z_{t}=k, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)=\mathscr{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

Rationale for Estimating Likelihood Parameters

Why are the data multi-modal?
Why should we estimate the mixture distribution parameters?

Patient 288 - Time 2

Components of a continuous HMM

Input Data: log ratios

There are T different data points with continuous values $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{T}\right\}$.

Latent State Model

- The latent variables $Z=\left\{Z_{1}, \ldots, Z_{T}\right\}$ can be assigned values from a set of K discrete states with probability

Initial state distribution

- The probabilities of the states for the first latent variable Z_{1} is the parameter $\pi=\left\{\pi_{1}, \ldots, \pi_{K}\right\}$
- π follows a prior distribution $p\left(\pi_{k} \mid \delta_{k}\right)=\operatorname{Dir}\left(\pi_{k} \mid \delta_{k}\right)$

Transition Model (homogenous HMM)

- The conditional distribution between adjacent data i and j corresponds to a table \boldsymbol{A} of transition probabilities

$$
p\left(Z_{t}=j \mid Z_{t-1}=i\right)=A_{i j}
$$

Emission Model (Continuous HMM)

- The emission is modeled using a mixture of Gaussians with the likelihood model

$$
p\left(x_{t} \mid Z_{t}=k, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)=\mathcal{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

- $\boldsymbol{\mu}$ is modeled with a prior $p\left(\mu_{k} \mid m_{k}, s_{k}\right)=\mathscr{N}\left(\mu_{k} \mid m_{k}, s_{k}\right)$
- $\boldsymbol{\sigma}^{\mathbf{2}}$ is modeled with prior $p\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right)=\operatorname{Inv} \operatorname{Gamma}\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right)$

Probabilistic Graphical Model

Inference \& parameter estimation using EM

Expectation-Maximization: Inference and parameter training

Initialize parameters: $\boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{\mu}$

E-Step: Inference using Forwards-Backwards Algorithm (Baum-Welch)

1. Compute "responsibilities" (Posterior of the latent states $\gamma\left(Z_{1: T}\right)$)

- State $Z_{t}=k$ is "responsible for generating observation x_{t} "

2. Compute "2-slice marginals" (Posterior of state transitions $\xi\left(Z_{t-1}, Z_{t}\right)$)

- Expected number of transitions from state k to j

M-Step: Update parameters (learning)

1. Initial state distribution, π
2. Transition probabilities, \boldsymbol{A}
3. Emission likelihood parameters, $\boldsymbol{\mu}$

Iterate between E-Step and M-Step, check when log posterior likelihood, $\log \mathbb{P}$, stops increasing.
伿 fred hutch

Inference \& parameter estimation using EM (E-Step)

E-Step: Forwards-backwards Algorithm (Baum-Welch; Sum-Product)

- Forward, $\alpha\left(Z_{t}\right)$: joint prob. of observing all past data up to time t when given Z_{t}
- Backward, $\beta\left(Z_{t}\right)$: conditional prob. of all future data from time $t+1$ to T when given Z_{t}

Forward Probabilities $(T \times K)$ - Past
$\alpha\left(Z_{t}=k\right)=\mathcal{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right) \sum_{j=1}^{K}\left\{A_{j k} \alpha\left(Z_{t-1}=j\right)\right\}$

Backward Probabilities $(T \times K)$ - Future

$$
\beta\left(Z_{t}=k\right)=\sum_{j=1}^{K}\left\{\mathcal{N}\left(x_{t+1} \mid \mu_{j}, \sigma_{j}^{2}\right) A_{k j} \beta\left(Z_{t+1}=j\right)\right\}
$$

Inference \& parameter estimation using EM (E-Step)

E-Step: Compute Responsibilities \& 2-Slice Marginals

- Responsibilities, $\gamma\left(Z_{t}=k\right)$: is the posterior on the latent states

$$
\gamma\left(Z_{t}=k\right)=\frac{\alpha\left(Z_{t}=k\right) \beta\left(Z_{t}=k\right)}{p(\boldsymbol{x})}
$$

Responsibilities
Matrix $K \times T$

- 2-Slice Marginals, $\xi\left(Z_{t-1}=k, Z_{t}=j\right)$: is the expected number of transitions between k to j

$$
\xi\left(Z_{t-1}=k, Z_{t}=j\right)=\frac{\alpha\left(Z_{t-1}=k\right) A_{k j} \mathcal{N}\left(x_{t} \mid \mu_{j}, \sigma_{j}^{2}\right) \beta\left(Z_{t}=j\right)}{p(\boldsymbol{x})} \quad \begin{aligned}
& \text { 2 Slice Marginals } \\
& \text { Matrix } K \times K \times(T-1)
\end{aligned}
$$

- The likelihood $p(\boldsymbol{x})=p\left(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\sigma}^{\mathbf{2}}, \boldsymbol{\pi}\right)$ is computed in the forwards recursion

$$
\ell=\log p(x)=\sum_{t=1}^{T} \log \left(\sum_{k=1}^{K} \alpha\left(Z_{t}=k\right)\right)
$$

Log likelihood

Inference \& parameter estimation using EM (M-Step)

Expected complete data log likelihood

Initial State Dist
 Transition

Emission
Priors

$$
Q=\sum_{k=1}^{K} \gamma\left(Z_{1}=k\right) \log \pi_{k}+\sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi\left(Z_{t-1}=k, Z_{t}=j\right) \log A_{k j}+\sum_{t=1}^{T} \sum_{k=1}^{K} \gamma\left(Z_{t}=k\right) \log \mathcal{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)+\text { priors }
$$

M-Step: update parameters, π, μ, σ^{2}

$$
\begin{array}{cc}
\hat{\pi}_{k}=\frac{\gamma\left(Z_{1}=k\right)+\delta^{\pi}(k)-1}{\sum_{j=1}^{K}\left\{\gamma\left(Z_{1}=j\right)+\delta^{\pi}(j)-1\right\}} & \text { MAP for initial state distribution } \\
\hat{\mu}_{k}=\frac{s_{k} \sum_{t=1}^{T} \gamma\left(Z_{t}=k\right) x_{t}+m \sigma_{k}^{2}}{s_{k} \sum_{t=1}^{T} \gamma\left(Z_{t}=k\right)+\sigma_{k}^{2}} & \text { MAP for for Gaussian means } \\
\hat{\sigma}_{k}^{2}=\frac{\sum_{t=1}^{T} \gamma\left(Z_{t}=k\right)\left(x_{t}-\bar{x}_{k}\right)^{2}+2 \beta_{k}}{\sum_{t=1}^{T} \gamma\left(Z_{t}=k\right)+2\left(\alpha_{k}+1\right)} & \text { MAP for for Gaussian variance }
\end{array}
$$

Where $\bar{x}=\frac{\sum_{t=1}^{T} \gamma\left(Z_{t}=k\right) x_{t}}{\sum_{t=1}^{T} \gamma\left(Z_{t}=k\right)}$

Inference \& parameter estimation using EM (M-Step)

M-Step: Update transition matrix, A
Expected number of transitions from k to j
Prior counts

$$
\hat{A}_{k j}=\frac{\sum_{t=2}^{T} \xi\left(Z_{t-1}^{\lambda}=k, Z_{t}=j\right)+\delta_{j}^{A}(k)}{\sum_{l=1}^{K}\left\{\sum_{t=2}^{T} \xi\left(Z_{t-1}=k, Z_{t}=l\right)+\delta_{j}^{A}(l)\right\}}
$$

"Pseudo-counts"

Expected number of transitions from k to any other state

Evaluate the log posterior

Iterate between E-Step and M-Step: stop when $\log \mathbb{P}$ changes less than ϵ compared to previous
EM iteration.

```
Algorithm 1 HMM Parameter Learning using EM
    Inputs:
                            Data: \(x_{1: T}\)
                            Initial parameters: \(\pi^{(0)}, \mu_{1: K}^{(0)},\left(\sigma_{1: K}^{2}\right)^{(0)}, A^{(0)}\)
                            Hyperparameters: \(\delta^{\pi}, m_{1: K}, s_{1: K}, \alpha_{1: K}, \beta_{1: K}, \delta^{A}\)
    Initialize:
    \(\pi \leftarrow \pi^{(0)}, \mu_{1: K} \leftarrow \mu_{1: K}^{(0)}, \sigma_{1: K}^{2} \leftarrow\left(\sigma_{1: K}^{2}\right)^{(0)}, A \leftarrow A^{(0)}\)
    Compute observed likelihood using initial parameters:
        obs.lik \(\leftarrow\) compute.gauss.lik()
    while converged \(=\) false do
        E-Step: Compute responsibilities using current parameters:
            \(\left(\gamma\left(Z_{1: T}\right)\right.\), loglik \() \leftarrow\).Call ("forward_backward")
        M-Step: Update parameters:
            \(\hat{\pi} \leftarrow\) update.pi()
            \(\hat{\mu}_{1: K} \leftarrow\) update.mu()
            \(\hat{\sigma}_{1: K}^{2} \leftarrow\) update.var()
            \(\hat{A} \leftarrow\) update.A()
        Assign updated parameters:
            \(\pi \leftarrow \hat{\pi}, \mu_{1: K} \leftarrow \hat{\mu}_{1: K}, \sigma_{1: K}^{2} \leftarrow \hat{\sigma}_{1: K}^{2}, A \leftarrow \hat{A}\)
        Re-compute observed likelihood using updated parameters:
            obs.lik \(\leftarrow\) compute.gauss.lik()
        Compute log Posterior:
            logP[curr.iter] \(\leftarrow\) compute.log.posterior(loglik,...)
        if ( logP[curr.iter] - logP[prev.iter] < \(\epsilon\) ) then
            converged = true
        end if
        \(\log P[p r e v . i t e r] ~ \leftarrow \log P[\) curr.iter]
    end while
    return Converged parameters \(\hat{\pi}, \hat{\mu}_{1: K}, \hat{\sigma}_{1: K}^{2}, \hat{A}\)
```


3. Copy Number Profiling using a HMM

- Defining the HMM for copy number analysis
- Copy number segmentation using Viterbi
- References:

- HMMcopy - Ha et al. Genome Research 22:1995-2007 (2012).
- ichorCNA - Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017).
- TitanCNA - Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. Genome Research 24:1881-1893 (2014).
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Probabilistic Model for Copy Number Analysis

Input Data: log ratios

There are T different genomic bins with log ratio data $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{T}\right\}$.

Latent State Model: copy number states

There are 5 different possible copy number states (genotypes), $K=\{1,2,3,4,5\}$

1. A specific genotype $k \in K$ can be assigned to the each of the latent states $Z=\left\{Z_{1}, \ldots, Z_{T}\right\}$
2. The initial state distribution $\pi=\left\{\pi_{1}, \ldots, \pi_{5}\right\}$ is used for the first latent state Z_{1}

Transition Model

3. The probabilities for transitioning to copy number state j in bin t from state i in bin $t-1$ are contained in matrix $A \in \mathbb{R}^{K \times K}$

$$
p\left(Z_{t}=j \mid Z_{t-1}=i\right)=A_{i j}
$$

Emission Model: likelihood for log ratio data

For each copy number state, the log ratio means are $\boldsymbol{\mu}=\left\{\mu_{1}, \ldots, \mu_{5}\right\}$ and variance $\boldsymbol{\sigma}^{2}=\left\{\sigma_{1}^{2}, \ldots, \sigma_{5}^{2}\right\}$
4. The emission model is a mixture of Gaussians with unknown parameters, $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^{\mathbf{2}}$,

$$
p\left(x_{t} \mid Z_{t}=k, \boldsymbol{\mu}, \boldsymbol{\sigma}^{\mathbf{2}}\right)=\mathscr{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

Prior Model

5. The priors in the model have hyper-parameters $\boldsymbol{\delta}^{\boldsymbol{\pi}}, m_{1: K}, s_{1: K}, \alpha_{1: K}, \beta_{1: K}, \boldsymbol{\delta}_{1: K}^{\boldsymbol{A}}$

$$
\begin{aligned}
p\left(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}\right) \\
p\left(\mu_{k} \mid m_{k}, s_{k}\right) & =\mathcal{N}\left(\mu_{k} \mid m_{k}, s_{k}\right) \\
p\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right) & =\operatorname{Inv} \operatorname{Gamma}\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right) \\
p\left(\boldsymbol{A}_{\boldsymbol{k}, \mathbf{1}: \boldsymbol{K}} \mid \boldsymbol{\delta}^{\boldsymbol{A}}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{A}_{\boldsymbol{k}, \mathbf{1}: \boldsymbol{K}} \mid \boldsymbol{\delta}_{\boldsymbol{k}}^{\boldsymbol{A}}\right)
\end{aligned}
$$

Probabilistic Model for Copy Number Analysis

Input Data: log ratios

There are T different genomic bins with \log ratio data $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{T}\right\}$.

Latent State Model: copy number states

E-Step:

Compute
Responsibilities

There are 5 different possible copy number states (genotypes), $K=\{1,2,3,4,5\}$

1. A specific genotype $k \in K$ can be assianed to the each of the latent states $Z=\left\{Z_{1}, \ldots, Z_{T}\right\}$

Transition Model

3. The probabilities for transitioning to copy number state j in bin t from state i in bin $t-1$ re contained in

$$
p\left(Z_{t}=j \mid Z_{t-1}=i\right)=A_{i j}
$$

Emission Model: likelihood for log ratio data

For each copy number state, the log ratio means are $\boldsymbol{\mu}=\left\{\mu_{0}, \ldots, \mu_{5}\right\}$ and variance $\boldsymbol{\sigma}^{2}=\left\{\sigma_{0}^{2}, \ldots, \sigma_{5}^{2}\right\}$
4. The emission model is a mixture of Gaussians with unknown parameters, $\boldsymbol{\mu}$ and $\boldsymbol{\sigma}^{2}$,

$$
p\left(x_{i} \mid Z_{i}=k, \boldsymbol{\mu}, \boldsymbol{\sigma}^{2}\right)=\mathscr{N}\left(x_{i} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

Prior Model

5. The priors in the model have hyper-parameters $\boldsymbol{\delta}^{\boldsymbol{\pi}}, m_{1: K}, s_{1: K}, \alpha_{1: K}, \beta_{1: K}, \boldsymbol{\delta}_{1: K}^{\boldsymbol{A}}$

$$
\begin{aligned}
p\left(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}\right) & =\operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \boldsymbol{\delta}^{\boldsymbol{\pi}}\right) \\
p\left(\mu_{k} \mid m_{k}, s_{k}\right) & =\mathcal{N}\left(\mu_{k} \mid m_{k}, s_{k}\right) \\
p\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right) & =\operatorname{Inv} \operatorname{Gamma}\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right)
\end{aligned}
$$

fred hutch

$$
p\left(\boldsymbol{A}_{k, \mathbf{1}: K} \mid \delta^{\boldsymbol{A}}\right)=\operatorname{Dirichlet}\left(\boldsymbol{A}_{k, \mathbf{1}: K} \mid \delta_{k}^{A}\right)
$$

Copy number segmentation using Viterbi

Viterbi algorithm (Max-Sum)

- Find the most probable sequence of copy number states

$$
\hat{Z}_{1: T}=\max _{Z_{1: T}} \log p\left(Z_{1: T} \mid x_{1: T}\right)
$$

- Perform max-sum of probabilities in trellis

$$
\omega\left(Z_{t+1}=k\right)=\log \mathscr{N}\left(x_{t+1} \mid \mu_{k}, \sigma_{k}^{2}\right)+\max _{Z_{t}}\left\{\log A_{Z_{l}, k}+\log \omega\left(Z_{t}\right)\right\}
$$

- Back trace from $\omega\left(Z_{T}\right)$ to find overall most probable path

Rationale for Estimating Likelihood Parameters

Why should we estimate the mixture distribution parameters?

- Can account for technical and biological "noise" by estimating model parameters

$$
\boldsymbol{\mu}=\left\{\mu_{0}, \ldots, \mu_{5}\right\} \text { and } \boldsymbol{\sigma}^{2}=\left\{\sigma_{0}^{2}, \ldots, \sigma_{5}^{2}\right\} ?
$$

Patient 288 - Time 1

Patient 288 - Time 2

Homework \#6: Profiling copy number alterations

A. Implement a copy number alteration (CNA) caller described in Lecture 3

- Implement components of a continuous HMM in a Bayesian framework
- Learn the parameters and infer the genotypes using EM
- Predict the copy number alteration segments for a chromosome.
- Expected outputs for each question will be provided so that you can check your code.
B. Power calculations for mutation detection described in Lecture 4

Due: May 15th

Office Hours with Anna-Lisa Doebley (adoebley@uw.edu)
Zoom Meeting ID: 4463567725 Password: GS541

- Wednesday, May 7, 2-3pm (Homework 5 questions)
- Monday, May 11, 2-3pm
- Wednesday, May 13, 2-3pm

FRED HUTCH

Extra Slides

- Continuous hidden Markov models (HMMs)
- Parameter inference using EM and copy number segmentation
- References:

- ichorCNA - Adalsteinsson*, Ha* Freeman* et al. Nature Communications 8:1324 (2017).
- HMMcopy - Ha et al. Genome Research 22:1995-2007 (2012).
- TitanCNA - Ha et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequencing data. Genome Research 24:1881-1893 (2014).
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738
fi. FRED HUTCH

ichorCNA: Model inference using EM (extra slide 1)

Complete data likelihood: joint distribution of latent and observed variables

$$
\begin{aligned}
p\left(x_{1: T}, Z_{1: T} \mid \boldsymbol{\theta}\right) & =p\left(Z_{1} \mid \pi_{1: K}\right)\left[\prod_{t=2}^{T} p\left(Z_{t} \mid Z_{t-1}, \boldsymbol{A}\right)\right] \prod_{t=1}^{T} p\left(x_{t} \mid Z_{t}, \mu, \sigma^{2}\right) \\
& =\prod_{k=1}^{K} \pi_{k}^{\|\left(Z_{i}=k\right)}\left[\prod_{t=2}^{T} \prod_{k=1}^{K} \prod_{j=1}^{K} A_{j k}^{\left.\square\left(Z_{t-1}=j\right)\right)\left(Z_{t}=k\right)}\right] \prod_{t=1}^{T} \prod_{k=1}^{K} \mathcal{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)^{\square\left(Z_{t}=k\right)}
\end{aligned}
$$

$$
\text { where } \boldsymbol{\theta}=\left\{\pi_{1: K}, \mu_{1: K}, \sigma_{1: K}^{2}, \boldsymbol{A}\right\}
$$

Complete data log likelihood

$$
\log p\left(x_{1: T}, Z_{1: T} \mid \boldsymbol{\theta}\right)=\sum_{k=1}^{K} \square\left(Z_{i}=k\right) \log \pi_{k}+\sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \mathrm{q}\left(Z_{t-1}=j, Z_{t}=k\right) \log A_{j k}+\sum_{t=1}^{T} \sum_{k=1}^{K} \mathrm{\square}\left(Z_{i}=k\right) \log \mathcal{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

Expected complete data log likelihood

$$
Q=\sum_{k=1}^{K} \gamma\left(Z_{1}=k\right) \log \pi_{k}+\sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi\left(Z_{t-1}=j, Z_{t}=k\right) \log A_{j k}+\sum_{t=1}^{T} \sum_{k=1}^{K} \gamma\left(Z_{t}=k\right) \log \mathcal{N}\left(x_{t} \mid \mu_{k}, \sigma_{k}^{2}\right)
$$

ichorCNA: Model inference using EM (extra slide 2)

E-Step: compute responsibilities using the forwards-backwards algorithm (Baum-Welch)

$$
\begin{aligned}
& \gamma\left(\mathbf{Z}_{t}\right)=p\left(\boldsymbol{Z}_{t} \mid \boldsymbol{x}, \theta^{\text {old }}\right)=\frac{p\left(\boldsymbol{x}\left|\boldsymbol{Z}_{t}\right| \boldsymbol{\theta}^{\text {old }}\right) p\left(\boldsymbol{Z}_{t} \mid \theta^{\text {old }}\right)}{p\left(\boldsymbol{x} \mid \theta^{\text {old }}\right)} \\
& \gamma\left(\boldsymbol{Z}_{t}\right)=\frac{p\left(x_{1}, \ldots, x_{t}, \boldsymbol{Z}_{t}\right) p\left(x_{t+1}, \ldots, x_{T} \mid \boldsymbol{Z}_{t}\right)}{p(\boldsymbol{x})} \\
& \gamma\left(\boldsymbol{Z}_{t}\right)=\frac{\alpha\left(\mathbf{Z}_{t}\right) \beta\left(\mathbf{Z}_{t}\right)}{p(\boldsymbol{x})} \quad \text { Responsibilities } \\
& \quad \text { Matrix } K \times T
\end{aligned}
$$

Where $\alpha\left(Z_{t}=k\right)=\mathscr{N}\left(x_{t} \mid Z_{t}=k\right) \sum_{j=1}^{K}\left\{A_{j k} \alpha\left(Z_{t}=j\right)\right\}$ is the forward recursion probability \quad Forward Probabilities
Where $\beta\left(Z_{t}=k\right)=\sum_{j=1}^{K}\left\{\mathcal{N}\left(x_{t+1} \mid Z_{t+1}=j\right) A_{k j} \alpha\left(Z_{t+1}=j\right)\right\}$ is the backward recursion probability Backward Probabilities
Matrix $K \times T$

$$
\begin{array}{ll}
\xi\left(\mathbf{Z}_{t-1}, Z_{t}\right)=p\left(\boldsymbol{x} \mid Z_{t-1}, Z_{t}\right) P\left(\mathbf{Z}_{t-1}, Z_{t}\right) & \\
\xi\left(\boldsymbol{Z}_{t-1}, \boldsymbol{Z}_{t}\right)=\frac{\alpha\left(\boldsymbol{Z}_{t-1}\right) p\left(x_{t} \mid Z_{t}\right) p\left(\boldsymbol{Z}_{t} \mid Z_{t-1}\right) \beta\left(\boldsymbol{Z}_{t}\right)}{p(\boldsymbol{x})} & \text { 2 Slice Marginals } \\
\text { Matrix } K \times K \times(T-1)
\end{array}
$$

Likelihood function $\quad \ell=\log p(x)=\sum_{t=1}^{T} \log \left(\sum_{k=1}^{K} \alpha\left(Z_{t}=k\right)\right)$

ichorCNA: Model inference using EM (extra slide 3)

M-Step: Update the parameters given the responsibilities

$$
\begin{aligned}
& \operatorname{Prior}\left(\pi_{1: K}, \mu_{1: K}, \sigma_{1: K}^{2}, \boldsymbol{A}\right)=\prod_{k=1}^{K} \operatorname{Dir}\left(\pi_{k} \mid \delta_{k}\right) \operatorname{Dir}\left(A_{k} \mid \delta_{A}\right) \mathcal{N}\left(\mu_{k} \mid \alpha, \beta\right) \operatorname{Inv} \operatorname{Gamma}\left(\sigma_{k}^{2} \mid \alpha_{k}, \beta_{k}\right) \quad \text { Priors } \\
& \mathcal{O}=Q+\log \mathbb{P}\left(\pi_{1: K}, \mu_{1: K}, \sigma_{1: K}^{2}, \boldsymbol{A}\right) \\
& \text { Complete data log likelihood } \\
& \text { - The object function } \mathcal{O} \text { is used to obtain the update equations for } \pi_{1: K} \text { and } \mu_{1: K} \\
& +\log \text { priors }
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{\partial \mathcal{O}}{\partial \pi_{k}}=0, \text { find } \hat{\pi}_{k} & \text { MAP for initial state distribution } \\
\frac{\partial O}{\partial \mu_{k}}=0, \text { find } \hat{\mu}_{k} & \text { MAP for for Gaussian means } \\
\frac{\partial O}{\partial \sigma_{k}^{2}}=0, \text { find } \hat{\sigma}_{k}^{2} & \text { MAP for for Gaussian variance } \\
\frac{\partial \Theta}{\partial A_{j k}}=0, \text { find } \hat{A}_{j k} & \text { MAP for transition probabilities }
\end{array}
$$

EM Convergence: after each iteration, monitor the log posterior

$$
\begin{aligned}
\ell & =\log p(\boldsymbol{x})=\sum_{t=1}^{T} \log \left(\sum_{k=1}^{K} \alpha\left(Z_{t}=k\right)\right) \\
\log \mathbb{P} & =\ell+\log \operatorname{Prior}\left(\pi_{1: K}, \mu_{1: K}, \sigma_{1: K}^{2}, \boldsymbol{A}\right)
\end{aligned}
$$

Incomplete Data
Log likelihood
Log posterior

