CANCER GENOMICS

Lecture 2:

 Probabilistic Methods for Mutation Detection
GENOME 541 Spring 2020

Gavin Ha, Ph.D.
April 28, 2022

CURES START HERE ${ }^{\circledR}$

Public Health Sciences Division Human Biology Division

- @GavinHa
gha@fredhutch.org
(T) https://github.com/GavinHaLab

GavinHaLab.org

Outline

1. Primer on statistical modeling (cont'd)

- Mixture models, inference and parameter estimation using the EM algorithm

2. Detecting Mutations in Cancer Genomes

- Visualizing somatic vs germline SNVs
- Sequencing read count data

3. Mixture Models for SNV Detection

- SNV genotyping strategy
- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

1. Primer on statistical modeling (cont'd)

- Probability
- Unsupervised learning, probability rules \& Bayes’ theorem
- Binomial distribution, Bayesian statistics
- Beta-binomial model example
- Mixture models, EM inference \& parameter learning
- References:
- Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Mixture Model: Referee example with multiple coins

- Recall: There are T different referees who tossed the same coin $N=\left\{1, \ldots, N_{T}\right\}$ times and came up with counts of heads $x=\left\{1, \ldots, x_{T}\right\}$.
- Now suppose there are 3 types of coins: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as $\{$ fair, heads, tails $\}$.
- Each referee draws one coin (with replacement) from a hat containing these coin types mixed together.

Mixture Model: Referee example with multiple coins

- Recall: There are T different referees who tossed the same coin $N=\left\{1, \ldots, N_{T}\right\}$ times and came up with counts of heads $\boldsymbol{x}=\left\{1, \ldots, x_{T}\right\}$.
- Now suppose there are 3 types of coins: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as $\{$ fair, heads, tails $\}$.
- Each referee draws one coin from a hat that contains a bunch of these coin types mixed together.

1. We don't know the proportion of each coin type in the hat.
2. We don't know which coin each referee drew from the hat.
3. We don't know the fairness (probability of heads) for each type of coin.

Referee	\# of tosses (\mathbf{N})	\# of heads (\boldsymbol{x})	Prop. of heads	Type of coin used?
Referee 1	40	25	0.63	$?$
Referee 2	42	35	0.83	$?$
Referee 3	39	27	0.69	$?$
Referee 4	XT_{T}	N_{T}	$\mathrm{XT}_{\mathrm{T}} / \mathrm{N}_{\mathrm{T}}$	$?$

Coin Type	Proportion in hat	Prob. of heads
"Fair"	$?$	$?$
"Heads"	$?$	$?$
"Tails	$?$	$?$

Mixture Model: Latent state model

1. What is the proportion of each coin type in the hat?

Find the probability for drawing a coin type.

- π_{k} is the probability of drawing coin type $k \in\{$ fair, heads, tails $\}$
- $\boldsymbol{\pi}=\left(\pi_{\text {fair }}, \pi_{\text {heads }}, \pi_{\text {tails }}\right)$ are the mixture weights where $\sum_{k=1}^{K} \pi_{k}=1$

2. Which coin did each referee draw?

Coin Type	Proportion in hat	Prob. of heads
"Fair"	$\pi_{\text {fair }}$	$?$
"Heads"	$\pi_{\text {heads }}$	$?$
"Tails	$\pi_{\text {tails }}$	$?$

Define the latent variables.

- Let $Z_{i}=k$ be the type of coin that referee i draws
- Z_{i} is called a latent variable and follows a Categorical distribution with parameter π

$$
\begin{aligned}
p\left(Z_{i}=k \mid \pi_{1: K}\right) & =\operatorname{Cat}\left(Z_{i}=k \mid \pi_{1: K}\right) \\
& = \begin{cases}\pi_{\text {fair }} & \text { if } k=\text { fair } \\
\pi_{\text {heads }} & \text { if } k=\text { heads } \\
\pi_{\text {tails }} & \text { if } k=\text { tails }\end{cases}
\end{aligned}
$$

- The proportions $\pi_{1: K}$ of the coin types follows a Dirichlet distribution (conjugate prior)

Referee	Type of coin used?
Referee 1	Z_{1}
Referee 2	Z_{2}
Referee 3	Z_{3}
Referee T	Z_{T}

$$
p\left(\pi_{1: K} \mid \delta_{1: K}\right)=\operatorname{Dirichlet}\left(\pi_{1: K} \mid \delta_{1: K}\right)
$$

Mixture Model: Likelihood as a mixture of binomials

3. What is the fairness (prob. of heads) for each type of coin? Find the probability of heads for each coin type.

- Recall: for a single coin, $p\left(x_{i} \mid N_{i}, \mu\right)=\operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right)$
- Define the likelihood for a 3-component mixture of binomials with 3 parameters, $\mu_{\text {fair }}, \mu_{\text {heads }}, \mu_{\text {tails }}$, one for each type of coin

$$
\begin{aligned}
p\left(x_{i} \mid Z_{i}=k, N_{i}, \mu_{1: K}\right) & =\operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right) \\
p\left(x_{i} \mid N_{i}, \mu_{1: K}, \pi_{1: K}\right) & =\sum_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)
\end{aligned}
$$

Observed likelihood

Mixture model

- Beta prior distribution $p\left(\mu_{k} \mid \alpha_{k}, \beta_{k}\right)=\operatorname{Beta}\left(\mu_{k} \mid \alpha_{k}, \beta_{k}\right)$

Log Likelihood Function of the Model

$$
\begin{aligned}
L\left(x_{1: T}, N_{1: T} \mid \mu_{1: K}, \pi_{1: K}\right) & =\prod_{i=1}^{T} \sum_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right) \\
\ell & =\sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)\right)
\end{aligned}
$$

Likelihood function

Mixture Model: Inference \& parameter estimation using EM (1)

Expectation-Maximization: Inference and parameter training

Initialize parameters: $\pi_{1: K}$ and $\mu_{1: K}$

E-Step: compute "responsibilities" (inference)

1. Which coin did each referee draw?
(Posterior of the latent states $\gamma\left(Z_{1: T}\right)$)

- Soft-clustering: Referee i has a probability for using each of the coins.
- Responsibilities: "coin that is responsible for generating observation x_{i} "

M-Step: Update parameters (learning)

2. What is the proportion of each coin type in the hat? $\pi_{1: K}$
3. What is the fairness (prob. of heads) for each coin type? $\mu_{1: K}$

Iterate between E-Step and M-Step, check when log-likelihood ℓ (plus log priors) stops increasing.

Responsibilities			
Referee	Fair Coin	Heads Coin	Tails Coin
1	$\gamma\left(Z_{1}=F\right)$	$\gamma\left(Z_{1}=H\right)$	$\gamma\left(Z_{1}=T\right)$
2	$\gamma\left(Z_{2}=F\right)$	$\gamma\left(Z_{2}=H\right)$	$\gamma\left(Z_{2}=T\right)$
3	$\gamma\left(Z_{3}=F\right)$	$\gamma\left(Z_{3}=H\right)$	$\gamma\left(Z_{3}=T\right)$
T	$\gamma\left(Z_{T}=F\right)$	$\gamma\left(Z_{T}=H\right)$	$\gamma\left(Z_{T}=T\right)$

Mixture Model: Inference \& parameter estimation using EM (2)

E-Step: compute responsibilities (inference)

1. What is the probability for a referee to draw each coin type? (Posterior of the latent states $Z_{1: T}$)

- Find the responsibilities given the current parameters

$$
\begin{aligned}
p\left(Z_{i}=k \mid x_{i}, N_{i}, \pi_{1: K}, \mu_{1: K}\right) & =\frac{p\left(x_{i} \mid Z_{i}=k\right) p\left(Z_{i}=k\right)}{p\left(x_{i}\right)} \\
& =\frac{\pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)}{\sum_{k^{\prime}=1}^{K} \pi_{k}^{\prime} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}{ }^{\prime}\right)} \\
& =\gamma\left(Z_{i}=k\right)
\end{aligned}
$$

Bayes' Rule Posterior distribution of the latent variables

Responsibilities
Matrix $T \times K$

- Responsibilities = "coin that is responsible for generating observation x_{i} "
- Soft-clustering: Referee i has a probability for using each of the coins.
- $\gamma\left(Z_{1: T}\right)$ is a matrix of probabilities with dimensions $T \times K$

Mixture Model: Inference \& parameter estimation using EM (3)

M-Step: Update parameters (learning)

2. What is the proportion of each coin type in the hat?

$$
\hat{\pi}_{k}=\frac{\sum_{i=1}^{T} \gamma\left(Z_{i}=k\right)+\delta(k)-1}{\sum_{j=1}^{K} \sum_{i=1}^{T}\left\{\gamma\left(Z_{i}=j\right)+\delta(j)-1\right\}}
$$

MAP for π
3. What is the fairness (prob. of heads) for each coin type?

$$
\hat{\mu}_{k}=\frac{\sum_{i=1}^{T} \gamma\left(Z_{i}=k\right) x_{i}+\alpha_{k}-1}{\sum_{i=1}^{T} \gamma\left(Z_{i}=k\right) N_{i}+\alpha_{k}+\beta_{k}-2} \quad \quad \text { MAP for } \mu
$$

Evaluate the log likelihood and log posterior: use updated parameters
Log posterior $\quad \log \mathbb{P}=\sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \hat{\mu}_{k}\right)\right)+\log \operatorname{Dir}(\hat{\boldsymbol{\pi}} \mid \boldsymbol{\delta})+\sum_{k=1}^{K} \log \operatorname{Beta}\left(\hat{\mu}_{k} \mid \alpha_{k}, \beta_{k}\right)$
Log likelihood Log priors
Iterate between E-Step and M-Step:

- Stop EM when new $\log \mathbb{P}$ changes less than ϵ compared to previous EM iteration.

Bayesian statistics: Posterior for Beta-Binomial Model (2)

Beta-Binomial Model: Posterior distribution

- To estimate the model parameter μ in a Bayesian framework, we compute the posterior, $p(\mu \mid \boldsymbol{x})$

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)
$$

- Beta is a conjugate prior for the binomial; the product of binomial and Beta has the form of a Beta

$$
p\left(\mu \mid x_{i}\right) \propto \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu\right) \times \operatorname{Beta}(\mu \mid \alpha, \beta)=\operatorname{Beta}\left(\mu \mid x_{i}+\alpha, N_{i}-x_{i}+\beta\right)
$$

Likelihood Prior Posterior


```
Algorithm 1 Binomial Mixture Model Inference and Learning using EM
    Inputs:
        Data: \(x_{1: T}, N_{1: T}\)
        Initial parameters: \(\pi_{1: K}^{(0)}, \mu_{1: K}^{(0)}\),
        Hyperparameters: \(\delta_{1: K}, \alpha_{1: K}, \beta_{1: K}\)
    Initialize:
        \(\pi_{1: K} \leftarrow \pi_{1: K}^{(0)}, \mu_{1: K} \leftarrow \mu_{1: K}^{(0)}\)
        \(\operatorname{logP} \leftarrow-\operatorname{Inf}\)
    Compute the observed likelihood using initial parameters:
        lik \(\leftarrow\) compute.binom.lik()
    while converged \(=\) false do
        E-Step: Compute responsibilities:
            \(\gamma\left(Z_{1: T}\right) \leftarrow\) compute.responsibilities()
        M-Step: Update parameters:
            \(\hat{\pi}_{1: K} \leftarrow\) update.pi()
            \(\hat{\mu}_{1: K} \leftarrow\) update.mu()
        Assign updated parameters:
            \(\pi_{1: K} \leftarrow \hat{\pi}_{1: K}, \mu_{1: K} \leftarrow \hat{\mu}_{1: K}\)
        Re-compute the observed likelihood using updated parameters:
            obs.lik \(\leftarrow\) compute.binom.lik()
        Compute the log-likelihood:
            loglik \(\leftarrow\) compute.loglik()
        Compute log Posterior:
            \(\log P\) [curr.iter] \(\leftarrow\) compute.log.posterior()
        if ( logP[curr.iter] - logP[prev.iter] < \(\epsilon\) ) then
            converged \(=\) true
        end if
        \(\log P[p r e v . i t e r] ~ \leftarrow \log P\) [curr.iter]
    end while
    return Responsibilites \(\gamma\left(Z_{1: T}\right)\), Converged parameters \(\hat{\pi}_{1: K}, \hat{\mu}_{1: K}\)

\section*{Mixture Model: Inference \& parameter estimation using EM (extra slide 1)}

Incomplete data log likelihood
\[
L\left(x_{1: T}, N_{1: T} \mid \mu_{1: K}, \pi_{1: K}\right)=\prod_{i=1}^{T} \sum_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)
\]
- The incomplete data log likelihood (plus the priors) is used to monitor EM convergence

\section*{Expected complete data log likelihood}
\[
\begin{aligned}
& \text { Complete data } \\
& \text { likelihood } \\
& L\left(\mu_{1: K}, \pi_{1: K} \mid x_{1: T}, Z_{1: T}, N_{1: T}\right)=\prod_{i=1}^{T} \prod_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)^{\square\left(Z_{i}=k\right)} \\
& \text { Complete data } \\
& \text { log likelihood } \\
& \ell\left(\mu_{1: K}, \pi_{1: K} \mid x_{1: T}, Z_{1: T}, N_{1: T}\right)=\sum_{i=1}^{T} \sum_{k=1}^{K} \llbracket\left(Z_{i}=k\right)\left\{\log \pi_{k}+\log \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)\right\} \\
& \text { Expected } \\
& \text { complete data } \\
& \text { log likelihood } \\
& Q=\mathbb{E}\left[\ell\left(\mu_{1: K}, \pi_{1: K} \mid x_{1: T}, Z_{1: T}, N_{1: T}\right)\right]=\sum_{i=1}^{T} \sum_{k=1}^{K} \mathbb{E}\left[\square\left(Z_{i}=k\right)\right]\left\{\log \pi_{k}+\log \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)\right\} \\
& =\sum_{i=1}^{T} \sum_{k=1}^{K} \gamma\left(Z_{i}=k\right)\left\{\log \pi_{k}+\log \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)\right\} \\
& \text { - The expected complete data log likelihood is in the M-Step for updating parameters. }
\end{aligned}
\]

\section*{Mixture Model: Inference \& parameter estimation using EM (extra slide 2)}

M-Step: Update the parameters given the responsibilities
\[
\begin{aligned}
& \mathbb{P}\left(\pi_{1: K}, \mu_{1: K}\right)=\operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\delta}) \prod_{k=1}^{K} \operatorname{Beta}\left(\mu_{k} \mid \alpha, \beta\right) \quad \text { Priors } \\
& \mathcal{O}=Q+\log \mathbb{P}\left(\pi_{1: K}, \mu_{1: K}\right) \quad \text { Complete data log likelihood } \\
& + \text { log priors }
\end{aligned}
\]
- The object function \(\mathcal{O}\) is used to obtain the update equations for \(\pi_{1: K}\) and \(\mu_{1: K}\)
\[
\frac{\partial \mathcal{O}}{\partial \mu_{k}}=0, \text { find } \hat{\mu}_{k} \text { and } \frac{\partial \mathcal{O}}{\partial \pi_{k}}=0, \text { find } \hat{\pi}_{k}
\]

EM Convergence: after each iteration, monitor the log posterior
\[
\begin{aligned}
\ell & =\sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid \mu_{k}, N_{i}\right)\right) \quad \begin{array}{l}
\text { Incomplete Data } \\
\text { Log likelihood }
\end{array} \\
\log \mathbb{P}\left(\pi_{1: K}, \mu_{1: K} \mid x_{1: T}\right) & =\ell+\log \mathbb{P}\left(\pi_{1: K}, \mu_{1: K}\right) \quad \text { Log posterior }
\end{aligned}
\]
- If the \(\log\) posterior, \(\log \mathbb{P}\left(\pi_{1: K}, \mu_{1: K} \mid x_{1: T}\right)\), stops increasing by \(\epsilon\), then EM is converged.
- If not using a Bayesian framework, then use the log likelihood, \(\ell\), to monitor convergence.

\section*{Mixture Models: Online Tutorial and Resource}
fiveMinuteStats (https://stephens999.github.io/fiveMinuteStats/)
by Dr. Matthew Stephens, Professor in Statistics \& Human Genetics at University of Chicago
1. Introduction to mixture models with probabilistic derivations and R code
- Examples with Bernoulli and Gaussian models
- https://stephens999.github.io/fiveMinuteStats/intro to mixture models.html
2. Introduction to EM with Gaussian Mixture Model example and R code
- https://stephens999.github.io/fiveMinuteStats/intro to em.html

\section*{2. Detecting Mutations in Cancer Genomes}

> Mutations (SNV, INDEL)


Copy Number Alterations


Structural Variants
Rearrangement


\section*{Visual inspection using IGV: Germline SNVs}

\section*{Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)}
- \(\sim 1.5\) to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)


\section*{Visual inspection using IGV: Germline SNVs}

\section*{Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)}
- \(\sim 1.5\) to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)


\section*{Visual inspection using IGV: Somatic SNVs}
- Somatic SNV requires comparing case (tumor) with control (PBMC)
- On the order of 10 to \(10^{4}\) number of mutations


Potential SNV with
p.V1181।

\section*{Visual inspection using IGV: Somatic SNVs}
- Somatic SNV requires comparing case (tumor) with control (PBMC)
- On the order of 10 to \(10^{4}\) number of mutations


\section*{Single Nucleotide Variant (SNV) Calling: Single Sample}


Referenceseq aattcaggaccaacacgacgggaagacaagttcatgtacttt
Allelic counts


\section*{SNV Variant Allele Fraction and Genotypes}

\section*{Variant Allele Fraction (VAF) Analysis}

- Allelic Fraction is defined as the fraction of reference reads, \(\frac{A}{N}\), where depth \(N=A+B\)
- Values in the table are the expected proportions of reference reads for each genotype
- Why might the observed allelic fractions be different than the expected values?

\section*{3. Mixture Model for SNV Detection}
- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

References:
- Goya et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26:730-36 (2010)
- Roth et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics 28:907-13 (2012)


\section*{Mapping the Referee Example to Mutation Calling}

\section*{Referee Coin Toss Example}

\section*{Data}

Referees \(1, \ldots, T\)
For each Referee \(i\)
- Coin Tosses: \(N_{i}\)
- Count of heads: \(x_{i}\)
- Count of tails: \(N_{i}-x_{i}\)

Parameters
Probability to draw coins: \(\pi_{\text {fair }}, \pi_{\text {heads }}, \pi_{\text {tails }}\)
Probability of heads for 3 types of coins
\[
\mu_{\text {fair }}, \mu_{\text {heads }}, \mu_{\text {tails }}
\]

Responsibilities
Probability that Referee \(i\) used coin \(k: \gamma\left(Z_{i}=k\right)\)

\section*{Mutation Calling from Sequencing Data}

\section*{Data}

Genomic loci \(1, \ldots, T\)
For each locus \(i\)
- Depth (total reads): \(N_{i}\)
- Count of reference base: \(x_{i}\)
- Count of variant base: \(N_{i}-x_{i}\)

\section*{Parameters}

Probability of genotypes: \(\pi_{A A}, \pi_{A B}, \pi_{B B}\)
Probability of reference base for 3 genotypes:
\[
\mu_{A A}, \mu_{A B}, \mu_{B B}
\]

Responsibilities
Probability that locus \(i\) has genotype \(k\) : \(\gamma\left(Z_{i}=k\right)\)

\section*{SNVMix: Probabilistic Model}

\section*{Sequence Data}

There are \(T\) different genomic loci with read depths \(N=\left\{1, \ldots, N_{T}\right\}\) and reference base counts \(\boldsymbol{x}=\left\{1, \ldots, x_{T}\right\}\)
There are \(K=3\) different possible genotypes \(A A, A B, B B\)

\section*{Mixture Model Setup}
1. The probabilities for the genotypes are \(\pi_{A A}, \pi_{A B}, \pi_{B B}\)
2. Thus, a specific genotype \(k \in A A, A B, B B\) can be assigned to the latent state \(Z_{i}\) at locus \(i\) with these probabilities
\[
p\left(Z_{i}=k \mid \pi_{1: K}\right)=\left\{\begin{array}{l}
\pi_{A A} \text { if } k=A A \\
\pi_{A B} \text { if } k=A B \\
\pi_{B B} \text { if } k=B B
\end{array}\right.
\]
3. The probability of observing a reference base for the genotypes are \(\mu_{a a}, \mu_{a b}, \mu_{b b}\)
4. The likelihood is a 3-component mixture of binomials
\[
p\left(x_{i} \mid N_{i}, \mu_{1: K}, \pi_{1: K}\right)=\sum_{k=1}^{K} \pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)
\]
5. The priors for genotype \(k \in\{a a, a b, b b\}\) in the model are
\[
\begin{aligned}
& p\left(\pi_{1: K} \mid \delta_{1: K}\right)=\operatorname{Dirichlet}\left(\pi_{1: K} \mid \delta_{1: K}\right) \\
& p\left(\mu_{k} \mid \alpha_{k}, \beta_{k}\right)=\operatorname{Beta}\left(\mu_{k} \mid \alpha_{k}, \beta_{k}\right)
\end{aligned}
\]

fred hutch

\section*{SNVMix: Inference \& parameter estimation using EM (revisited)}

\section*{E-Step: compute responsibilities}
1. What is the probability of locus \(i\) having genotype \(k\) ?
\[
\gamma\left(Z_{i}=k\right)=\frac{\pi_{k} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \operatorname{Bin}\left(x_{i} \mid N_{i}, \mu_{j}\right)}
\]

\section*{Responsibilities}

Matrix \(T \times K\)

\section*{M-Step: update parameters}
2. What is the probability of genotype \(k\) ?
\[
\hat{\pi}_{k}=\frac{\sum_{i=1}^{T} \gamma\left(Z_{i}=k\right)+\delta(k)-1}{\sum_{j=1}^{K}\left\{\sum_{i=1}^{T} \gamma\left(Z_{i}=j\right)+\delta(j)-1\right\}}
\]

\section*{MAP for \(\pi\)}
3. What is the probability of observing a reference base for genotype \(k\) ?
\[
\hat{\mu}_{k}=\frac{\sum_{i=1}^{T} \gamma\left(Z_{i}=k\right) x_{i}+\alpha_{k}-1}{\sum_{i=1}^{T} \gamma\left(Z_{i}=k\right) N_{i}+\alpha_{k}+\beta_{k}-2}
\]

MAP for \(\mu\)

Evaluate the log likelihood and log posterior: use updated parameters
\[
\log \mathbb{P}=\sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_{k} \operatorname{Bin}\left(x_{i} \mid \hat{\mu}_{k}, N_{i}\right)\right)+\log \operatorname{Dir}\left(\hat{\pi}_{k} \mid \delta_{k}\right)+\sum_{k=1}^{K} \log \operatorname{Beta}\left(\hat{\mu}_{k} \mid \alpha_{k}, \beta_{k}\right) \quad \text { Log posterior }
\]

Iterate between E-Step and M-Step: stop when \(\log \mathbb{P}\) changes less than \(\epsilon\) compared to previous EM iteration.

\section*{SNVMix: Calling somatic SNVs from genotype inference}

Genotypes: \(A A, A B, B B\)
\begin{tabular}{lll} 
Homozygous & Heterozygous & Homozygous \\
Reference & Variant & Variant \\
(not SNV) & (Het SNV) & (Homd SNV)
\end{tabular}
- To call a variant for each locus \(i\), we can apply a threshold on the responsibilities \(\gamma\left(Z_{i}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Responsibilities } \\
\hline Locus & AA & AB & BB \\
\hline 1 & \(\gamma\left(Z_{1}=A A\right)\) & \(\gamma\left(Z_{1}=A B\right)\) & \(\gamma\left(Z_{1}=B B\right)\) \\
\hline 2 & \(\gamma\left(Z_{2}=A A\right)\) & \(\gamma\left(Z_{2}=A B\right)\) & \(\gamma\left(Z_{2}=B B\right)\) \\
\hline 3 & \(\gamma\left(Z_{3}=A A\right)\) & \(\gamma\left(Z_{3}=A B\right)\) & \(\gamma\left(Z_{3}=B B\right)\) \\
\hline T & \(\gamma\left(Z_{T}=A A\right)\) & \(\gamma\left(Z_{T}=A B\right)\) & \(\gamma\left(Z_{T}=B B\right)\) \\
\hline
\end{tabular}
- We can sum \(\gamma\left(Z_{i}=A B\right)\) and \(\gamma\left(Z_{i}=B B\right)\) to get the overall probability (either genotype AB or BB ) that locus \(i\) is a variant containing the non-reference allele (B)
- Additional steps required for filtering and determining if variant is somatic vs germline
- Minimum 3 variant reads \(\left(N_{i}-x_{i}\right)\) is typically required
- Account for mapping and base qualities of sequenced reads (i.e. SNVMix2)
- Compare locus \(i\) in tumor sample to (1) matched normal sample, (2) germline databases

\section*{SNV Genotyping Callers}
-

Variant Allele Fraction Analysis
- Single sample

Genotypes: \(A A, A B, B B\)
\(\begin{array}{lll}\text { Homozygous } & \text { Heterozygous } & \text { Homozygous } \\ \text { Reference } & \text { Variant } & \text { Variant } \\ \text { (not SNV) } & \text { (Het SNV) } & \text { (Homd SNV) }\end{array}\)
- Joint tumor-normal

Joint Genotypes:
\begin{tabular}{r|l|l|l}
\(g_{N} \backslash g_{T}\) & AA & AB & BB \\
\hline AA & 0.01 & 0.95 & 0.00 \\
\hline AB & 0.00 & 0.04 & 0.00 \\
\hline BB & 0.00 & 0.00 & 0.00
\end{tabular}



Tumour

ACTCCCGTCGGAACGAATGCCACG

ACTCCCGTCGGAACCAATGCC - -- CTCCCGTCGGAACCAATGCCACC - - - CCCGTCGGAACCAATGCCACG -----CGTCGGAACCAATGCCACG -----CATCGGAACCAATGCCACC ------GTCGGAACCAATGCCACG --------------CAATGCCACC 12233556666660777778773 122335666666667777778773 ACTCCCGTCGGAACCAATGCCACC - - TCCCGTCGGAACCAATGCCACC - - - CCCGTCGGAACCAATGCCACC ------GTCGGCACCAATGCCACG -. -- -- ---------------------------------AATGCCACG 112333445563660777788883 Allelic Counts \(\begin{array}{ll}a_{T} & 112333445563660777788883 \\ d_{T} & 112333445566666777788888\end{array}\)

\begin{tabular}{|c|c|c|c|}
\hline Variant caller & Type of variant & Single-sample mode & Type of core algorithm \\
\hline BAYSIC [48] & SNV & No & Machine learning (ensemble caller) \\
\hline CaVEMan [34] & SNV & No & Joint genotype analysis \\
\hline deepSNV [38] & SNV & No & Allele frequency analysis \\
\hline EBCall [37] & SNV, indel & No & Allele frequency analysis \\
\hline FaSD-somatic [31] & SNV & Yes & Joint genotype analysis \\
\hline FreeBayes [44] & SNV, indel & Yes & Haplotype analysis \\
\hline HapMuC [42] & SNV, indel & Yes & Haplotype analysis \\
\hline JointSNVMix2 [30] & SNV & No & Joint genotype analysis \\
\hline LocHap [43] & SNV, indel & No & Haplotype analysis \\
\hline LoFreq [36] & SNV, indel & Yes & Allele frequency analysis \\
\hline LoLoPicker [39] & SNV & No & Allele frequency analysis \\
\hline MutationSeq [45] & SNV & No & Machine learning \\
\hline MuSE [40] & SNV & No & Markov chain model \\
\hline MuTect [35] & SNV & Yes & Allele frequency analysis \\
\hline SAMtools [8] & SNV, indel & Yes & Joint genotype analysis \\
\hline Platypus [41] & SNV, indel, SV & Yes & Haplotype analysis \\
\hline qSNP [24] & SNV & No & Heuristic threshold \\
\hline RADIA [26] & SNV & No & Heuristic threshold \\
\hline Seurat [33] & SNV, indel, SV & No & Joint genotype analysis \\
\hline Shimmer [25] & SNV, indel & No & Heuristic threshold \\
\hline SNooPer [47] & SNV, indel & Yes & Machine learning \\
\hline SNVSniffer [32] & SNV, indel & Yes & Joint genotype analysis \\
\hline SOAPsnv [27] & SNV & No & Heuristic threshold \\
\hline SomaticSeq [46] & SNV & No & Machine learning (ensemble caller) \\
\hline SomaticSniper [28] & SNV & No & Joint genotype analysis \\
\hline Strelka [17] & SNV, indel & No & Allele frequency analysis \\
\hline TVC [97] & SNV, indel, SV & Yes & Ion Torrent specific \\
\hline VarDict [18] & SNV, indel, SV & Yes & Heuristic threshold \\
\hline VarScan2 [9] & SNV, indel & Yes & Heuristic threshold \\
\hline Virmid [29] & SNV & No & Joint genotype analysis \\
\hline
\end{tabular}

\section*{Somatic SNV Detection using Joint Inference from Tumor-Normal Pairs}

\section*{1.Latent variable state space}
- 9 genotype pairs \(\left(k_{n}, k_{t}\right)\)
- \(n, t \in\{A A, A B, B B\}\)

\section*{2.Probability of the genotypes}
- 9 mixture weights \(\pi_{\left(k_{n}, k_{t}\right)}\)

\section*{3.Joint binomial mixture model}
- 9-component mixture model
\(p\left(x_{i}^{n}, x_{i}^{t} \mid N_{i}^{n}, N_{i}^{t}, \mu_{1: K}^{n}, \mu_{1: K}^{t}\right)=\sum_{k_{n}=1}^{K} \sum_{k_{i}=1}^{K} \pi_{\left(k_{n}, k_{i}\right)} \operatorname{Bin}\left(x_{i}^{n} \mid N_{i}^{n}, \mu_{k_{n}}^{n}\right) \operatorname{Bin}\left(x_{i}^{t} \mid N_{i}^{t}, \mu_{k_{i}}^{t}\right)\)
- with 9 parameter tuples \(\left(\mu^{n}, \mu^{t}\right)\)

保 fred hutch
Tumor, \(t\)
Normal, \(n\)\begin{tabular}{c|c|c|c}
\(k_{n} \backslash k_{t}\) & AA & AB & BB \\
\hline AA & 0.01 & 0.95 & 0.00 \\
\hline AB & 0.00 & 0.04 & 0.00 \\
\hline BB & 0.00 & 0.00 & 0.00
\end{tabular}
\begin{tabular}{c} 
Reference \\
Genome
\end{tabular}

Normal

ACTCCCGTCGGAACGAATGCCACG

ACTCCCGTCGGAACCAATGCC
- CTCCCGTCGGAACCAATGCCACC
- - -CCCGTCGGAACCAATGCCACG
--- --CGTCGGAACCAATGCCACG
-- - - -CATCGGAACCAATGCCACC
----- -GTCGGAACCAATGCCACG
--------------CAATGCCACC
-------------------CACC
\(a_{N} \quad 122335566666660777778773\)
\(d_{N} \quad 122335666666667777778777\)
ACTCCCGTCGGAACCAATGCCACC
- -TCCCGTCGGAACCAATGCCACC
- - -CCCGTCGGAACCAATGCCACC
----- - GTCGGCACCAATGCCACG
Tumour

Allelic Counts
\(112333445563660---\)-CCACG
\(d_{T} \quad 112333445566666777788888\)
Germline
Somatic


\section*{Homework \#5: Single-nucleotide Genotype Caller}

Implement a standard binomial mixture model described in Lecture 2.
- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.

Due: May 5th, 2022
Virtual Office Hours with Anna-Lisa Doebley (adoebley@uw.edu)
- May 3 @ 3pm (new time)
- May 6 @ 2pm
- Zoom Meeting ID: 4463567725 (Passcode: GS541)```

