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1. Introduction to Cancer Genome Analysis 

2. Probabilistic Methods for Mutation Detection 

3. Probabilistic Methods for Profiling Copy Number Alteration  

4. Additional Topics: Tumor Heterogeneity, Mutation Detection 
Power, Structural Variation

Overview of Cancer Genomics Module



Homework Assignments and Office Hours

TA for Module: Anna-Lisa Doebley (adoebley@uw.edu) 

Homework #5  

Due: May 5th 

Virtual Office Hours  

• Week of May 2
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Homework #6  

Due: May 12th 

Virtual Office Hours  

• Week of May 9

Date/Time and Zoom link will be provided in Class

mailto:adoebley@uw.edu
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1. Intro to Cancer Genome Alterations 
• Genomic alterations in cancer: drivers vs passengers, somatic vs germline 
• Tumor evolution and heterogeneity 

2. Overview of Cancer Genome Analysis 
• Computational strategy and workflow 
• Tumor DNA Sequencing  
• Types of genomic alterations predicted from tumor sequencing 
• Methods/tools/algorithms in following lectures 

3. Primer on statistical modeling 
• Binomial probability distribution, Bayesian statistics, parameter learning

Outline: Introduction to Cancer Genome Analysis



The hallmarks of cancer

• All cancers exhibit many of these 
hallmarks that lead to tumor 
growth 

• Genome instability & mutation 
is an enabling characteristic that 
can result in multiple hallmarks

5Hannahan & Weinberg. Cell 144:646-74 (2011) 



Cancer is a disease of the genome

Cancer progression results from mutations acquired throughout lifetime 

• Few driver mutations, many passenger mutations 

• Mutational process can be intrinsic and from environmental mutagens

6Stratton, Campbell & Futreal. Nature 458:719-24 (2009) 
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Variant or Mutation or Alteration or Polymorphism 
• Changes in the genome sequence of a sample compared to a reference sequence 

Germline Variant 
• Chromosomes: 22 autosomal pairs + 1 sex pair  

- Each set inherited from maternal and paternal germline cells 
• Variant inherited from one or both parental chromosomes 
• Source of genetic differences between ancestral populations and individuals 
• Polymorphism: >1% frequency in a population 

Somatic Variant 
• Mutation acquired during individual’s lifetime 
• Important to identify in sporadic cancers and other non-familial diseases

Genomic Variation: Somatic and Germline 
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1. Single nucleotide base substitutions 
• Germline single nucleotide 

polymorphism (SNP) 
• Somatic single nucleotide variant (SNV) 

2. Small insertions or deletions 
• Germline or somatic insertion or 

deletion (INDEL) 
• Small indels: 1 bp - 20 bps 
• Large indels: 20 - 10,000 bps

Types of Genomic Variation: Small/Short mutations

ATTT

chromosome in 
normal cell

chromosome in 
tumor cell

Single nucleotide variant

AG AG

heterozygous 
somatic 
variant

germline 
variant

Insertion-Deletion (INDEL)

T - - GTAGG

G[TA]AGA

TAGGTAGG

GAGA

deletion

insertion
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3. Copy number changes 
• Germline copy number variant (CNV) or 

polymorphism (CNP)  
• Somatic copy number variant (CNV) or 

alterations (CNA) 
• Size > 1 kbps, typically mega-bases 

(depending on resolution) 
4. Structural rearrangements 

• Germline or Somatic structural variant (SV) 
• Simple events: deletion, duplication, inversion, 

translocation 
• Single nucleotide resolution for breakpoints 
• Size > 20 bps, typically kilo-bases to mega-

bases

Types of Genomic Variation: Large alterations

Structural rearrangements
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capture
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or

Copy number alterations+ Chr.1 - Chr.2q telomeric loss focal copy-number 
alterations

gain

loss

SegmentsAneuploidy

whole 
chromosome

chromosome  
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Diploid



Types of Genomic Variation in Cancer
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Tumors exhibit different levels of heterogeneity
Across patient populations: 
1. Cancer types: between primary tumors of 

different organs or tissue-of-origin (eg. 
Breast and lung cancers) 

2. Tumor subtypes: between subset of 
patients with tumors having similar 
molecular features (e.g. ER+ and ER- breast 
cancers) 

3. Same-subtype: between tumors from 
different patients 

Within an individual patient: 
4. Inter-tumor: between tumors within a patient   
5. Intra-tumor heterogeneity: between cells 

within a tumor lesion (e.g. tumor clones, 
stromal cells, infiltrating lymphocytes)

11Grzywa et al. Transl Oncol. 10:956-75 (2017) 



Cancer Genes: Driver vs Passenger Genomic Alterations
How do we find the mutated genes that drive cancer? 
• Significantly Mutated Genes: recurrently mutated genes in patient cohorts 
• Account for covariates (e.g. gene length, expression, replication timing)

12Bailey et al. Cell 173:371-85 (2018) https://www.cbioportal.org/

Top 20 Driver genes 
33 Cancer types 
10,437 Tumors 
10,098 mutations 

TTN (1676 mutations)

TP53 (814 mutations)

1144 
Lung 

Cancers

https://www.cbioportal.org/


Tumors exhibit different levels of heterogeneity
Across patient populations: 
1. Cancer types: between primary tumors of 

different organs or tissue-of-origin (eg. 
Breast and lung cancers) 

2. Tumor subtypes: between subset of 
patients with tumors having similar 
molecular features (e.g. ER+ and ER- breast 
cancers) 

3. Same-subtype: between tumors from 
different patients 

Within an individual patient: 
4. Inter-tumor: between tumors within a patient   
5. Intra-tumor heterogeneity: between cells 

within a tumor lesion (e.g. tumor clones, 
stromal cells, infiltrating lymphocytes)

13Grzywa et al. Transl Oncol. 10:956-75 (2017) 



Tumors undergo genome evolution and clonal expansion 

• Clonal diversity may have implications for treatment resistance 

• Dynamics of clones can change in the blood and metastases

Van Loo and Voet. Curr Opin Genet Dev (2014) 14



Tumor genome evolution selects for cellular phenotypes 

15Aparicio & Caldas. NEJM. 368:842-51 (2013) 



Inferring intra-tumor genomic heterogeneity from sequencing

• Combined signals from normal and multiple populations of tumor cells. 

• Cellular prevalence: proportion of tumor cells harboring event 

• Discuss further in Lecture 4…
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Inferring evolutionary history of a tumor from sequencing
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D BC AMutations (eg. SNVs)

Adapted from Beerenwinkel et al. Syst. Biol. 64:e1-25 (2015) 
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2. Overview of Cancer Genome Analysis

• Computational strategy and workflow 

• Tumor DNA sequencing  

• Whole genome vs whole exome vs targeted sequencing 

• Types of genomic alterations predicted from tumor sequencing 

• Methods/tools/algorithms in following lectures



General Workflow of Tumor Genome Sequencing (1)

• Tumor and Normal pairing 
• Distinguish somatic and germline 

alterations 

• Capture baits can be used to select regions 
• e.g. whole exome or targeted gene panels 

• Potential sources of error can arise 
1. 8-oxoG transversions (C>A/G>T) 
2. PCR errors and GC content bias 
3. Sequencing errors

19
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Genome Sequencing: Massively Parallel Sequencing
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https://www.broadinstitute.org/files/shared/illuminavids/sequencingSlides.pdf

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf


Genome Sequencing: Sequence vs Physical Coverage

Sequence Coverage = number of 
sequenced reads spanning locus 

Physical Coverage = number of 
DNA fragments spanning locus 

• Mutation detection rely on 
sequence coverage 

• Rearrangement detection rely on 
both

21Meyerson, Gabriel & Getz. Nature Review Genetics 11:685-96 (2010) 

Single 
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Paired 
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Whole Genome Sequencing Whole Exome Sequencing Targeted Gene Sequencing
• Genome-wide (unbiased) 
• 0.1-100x genome coverage

• Exons (2% of genome) 
• 50-500x target coverage

• Target regions (1-5Mb) 
• 100-25000x target coverage

• More sequencing required 
• Expensive

• Less sequencing required 
• Cost-effective
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• Coding/Non-coding mutations 
• Copy number alterations 
• Structural variation

• Coding mutations (all genes) 
• Copy number alterations 
• Gene fusions rearrangements

• Coding mutations (selected) 
• Targeted rearrangements

Tumor

Normal
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Types of Genomic Alterations Predicted from Sequencing
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1000 Genomes Project (https://www.internationalgenome.org/) 
UK10K (https://www.uk10k.org/) 

The 100,000 Genomes Project  
(https://www.genomicsengland.co.uk/) 
• Rare disease, cancer, infectious disease 

Genome 10K Project (https://genome10k.soe.ucsc.edu/) 
• Genomic “zoo” of 16,000 vertebrate species 

Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/) 
Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org/) 
The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) 
International Cancer Genome Consortium (ICGC) (https://icgc.org/)

Genome Sequencing: International Consortia & Projects

https://www.internationalgenome.org/
https://www.uk10k.org/
https://www.genomicsengland.co.uk/
https://genome10k.soe.ucsc.edu/
http://exac.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://portal.gdc.cancer.gov/
https://icgc.org/
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Cancer Genome Sequence Data: Databases & Online Resources

https://portal.gdc.cancer.gov/

https://portal.gdc.cancer.gov/


26

Cancer Genome Sequence Data: Databases & Online Resources

https://www.cbioportal.org/

https://www.cbioportal.org/
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Cancer Genome Sequence Data: Databases & Online Resources
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3. Primer on statistical modeling
• Probability  

• Unsupervised learning, probability rules & Bayes’ theorem 

• Binomial distribution, Bayesian statistics 

• Beta-binomial model example 

• Mixture models, EM inference 

• References: 
• Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 

9780262018029 

• Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science 
and Statistics). Springer. ISBN: 0387310738 

• https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf


Sequencing Data Analysis Requires Probabilistic Models

• Sequencing data contain uncertainty due to  

• Technical noise from imperfect measurements & errors 

• Biological features in the signal measurements 

• How do we predict genomic alterations accounting for these features and noise? 

• Need approaches to learn the patterns of these features from the data… 

Types of machine learning:  

– Supervised: output data , input data , and training set  

• Classification (  are labels), Regression (  is continuous) 

– Unsupervised: Only given input data , learn the patterns of the data 

• E.g. clustering input data  into  clusters by estimating their assignments 

y x D = {(x, y)}
y y

D = {x}
x K z

29



Primer: Probability Theory

Let  be a random variable. The probability for the event  for some value  
is  or  for short. Let  be another random variable. 

Probability Rules 

• Sum rule:  

• Product rule:  and  

• Conditional Probabilities:  

• Marginal Probabilities:  

• Bayes’ Theorem (rule): 

X X = x x
p(X = x) p(x) Y

p(X) = ∑Y p(X, Y )
p(X, Y ) = p(Y |X)p(X) p(Y, X) = p(X |Y )p(Y )

p(Y |X) = p(X, Y)
p(X)

p(X) = ∑Y p(Y, X) = ∑Y p(X |Y )p(Y )

p(Y |X) =
p(X, Y )

p(X)
=

p(X |Y )p(Y )
∑Y′ 

p(X |Y′ )p(Y′ )
30



Binomial Distribution: Referee Coin Toss Example 

• A referee has a coin that he uses to decide which team gets first possession. She tossed the coin  times last 
season, once per game. We assume this coin was fair and had a probability  for showing a head. 
We kept track of the number of heads  that appeared. 

• What is the probability of seeing a specific number of heads? e.g.  out of  tosses  

Probability mass function  

• Let  be the random variable representing the number of heads. If the probability of heads is , then  has a 
binomial distribution,  or  where  

  

• My coin-toss example: for  out of  and a fair coin  

N
μ = 0.5

x
x = 25 N = 40

X μ X
X ∼ Bin(N, μ) p(X = x |N, μ) = Bin(x |N, μ)

Bin(x |N, μ) = (N
x )μx(1 − μ)N−x

x = 5 N = 11 μ = 0.5

p(X = 5 |N = 11,ρ = 0.5) = Bin(5 |11,0.5) = (11
5 )0.55(1 − 0.5)11−5

Probability distribution: Binomial

31
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Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example 

• A referee has a coin that he uses to decide which team gets first possession. She tossed the coin  times last 
season, once per game. We assume this coin was fair and had a probability  for showing a head. 
We kept track of the number of heads  that appeared. 

• What is the probability of seeing a specific number of heads? e.g.  out of  tosses  

Probability mass function  

• Let  be the random variable representing the number of heads. If the probability of heads is , then  has a 
binomial distribution,  or  where  

  

• Our coin-toss example: for  out of  and a fair coin  

N
μ = 0.5

x
x = 25 N = 40

X μ X
X ∼ Bin(N, μ) p(X = x |N, μ) = Bin(x |N, μ)

Bin(x |N, μ) = (N
x )μx(1 − μ)N−x

x = 25 N = 40 μ = 0.5

p(X = 25 |N = 40,μ = 0.5) = Bin(25 |40,0.5) = (40
25)0.525(1 − 0.5)40−25

32

  

number of ways the 25 heads  
is observed among the sequence of  
40 tosses. 

(N
k )



• Suppose there are  different referees who toss the same 

coin   times and come up with head 

counts .  

• Assuming the referees' tosses are independent and 

identically distributed (iid), what is the probability of 

observing the head counts given the coin (e.g. )? 

    

• What if the coin wasn’t fair and the probability of heads, , 

might not be 0.5?

T
N = {1,…, NT}

x = {1,…, xT}

μ = 0.5

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

μ
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• What is the probability of heads, , of this coin given the evidence? 

• We can estimate this model parameter using 

maximum likelihood estimation 

  

  

  

μ

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

log p(x1:T |N1:T, μ) =
T

∑
i=1

log Bin(xi |Ni, μ)

̂μ =
∑T

i=1 xi

∑T
i=1 Ni

Maximum likelihood estimation (MLE)

34

Likelihood

MLE

Log-likelihood

1.Log of the likelihood 
2.Take the derivative wrt to  
3.Equate to 0 
4.Solve for 

μ

μ

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

●0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty

0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty

●●●●●●●●●●● ●●●●●0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty

Number of Heads

0.0

0.1

0.2

0 10 20 30 40
Reference base counts

D
en

si
ty

MLE

https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf


Bayesian Statistics: Prior distribution for model parameters

Likelihood for Binomial Model 

  

• MLE uses the evidence to estimate parameter  but our 
sample size is small and MLE may overfit 

• Zero count or sparse data problem: If you have a bad record keeper who only tallies coin tosses from 
referees who never tosses a tail, then does that mean the concept of tails on a coin does not exist at all? 

• Can we capture a more natural expectation of how a coin might behave? Also, what if we have some 
knowledge that the coin might be biased? 

Prior Distribution for binomial parameter,  

• The proportion of heads is between 0 and 1 ( ) and can be sampled from a distribution itself 

•  can be drawn from a Beta distribution, which is in the interval , with hyper-parameters  and  

 

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

̂μ

μ

μ ∈ [0,1]
μ [0,1] α β

μ ∼ Beta(α, β)
p(μ) = Beta(μ |α, β)

35

Likelihood

Prior

# of tosses (N) # of heads (x) Prop. of heads

Referee 1 40 25 0.63

Referee 2 42 35 0.83

Referee 3 39 27 0.69

Referee T xT NT xT/NT

Likelihood



Bayesian statistics: Posterior for Beta-Binomial Model (1)
Binomial likelihood and Beta prior 

•   different head counts  for  sets of tosses and a prior distribution on  
(prob. of heads) 

    

• To estimate parameter  in a Bayesian framework 

• We need the posterior, , but only have  and  

• Recall Bayes’ Theorem:  
  

• The posterior is our belief state by combining evidence from observations and our prior beliefs.

T x = {1,…, xT} N = {1,…, NT} μ

p(x1:T |N1:T, μ) =
T

∏
i=1

Bin(xi |Ni, μ)

p(μ) = Beta(μ |α, β)

μ
p(μ |x) p(x |μ) p(μ)

p(Y |X) = p(X |Y)p(Y)
∑Y′ p(X |Y′ )p(Y′ )

∝ p(X |Y ) p(Y )

36
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Bayesian statistics: Posterior for Beta-Binomial Model (2)
Beta-Binomial Model: Posterior distribution 
• To estimate the model parameter  in a Bayesian framework, we compute the posterior,  

   

• Beta is a conjugate prior for the binomial; the product of binomial and Beta has the form of a Beta 

  

μ p(μ |x)

p(μ |xi) ∝ Bin(xi |Ni, μ) × Beta(μ |α, β)

p(μ |xi) ∝ Bin(xi |Ni, μ) × Beta(μ |α, β) = Beta(μ |xi + α, Ni − xi + β)

37

Figure 3.6 in Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press

PosteriorLikelihood Prior

Prior Only 
Beta(2,2)

Likelihood only 
Posterior w/ 
uniform prior 
Bin × Beta(1,1) Posterior w/ 

weak prior 
Bin × Beta(2,2)

Prior Only 
Beta(5,2)

Likelihood only 
Posterior w/ 
uniform prior 
Bin × Beta(1,1) Posterior w/ 

strong prior 
Bin × Beta(5,2)



Bayesian statistics: MAP estimate
Beta-Binomial Model: Posterior distribution  

  

• Then, what is the probability of heads, , of this coin given the evidence and the prior? 

Maximum a posteriori (MAP) estimate  

• From the posterior, we can estimate the parameter using the maximum a posteriori (MAP),  

• MAP refers to the mode of the posterior distribution and the mode of a Beta is  

• Since the posterior has the form of a Beta distribution, then the MAP is  
•     

  

   

  

p(μ |xi) ∝ Bin(xi |Ni, μ) × Beta(μ |α, β) = Beta(μ |xi + α, Ni − xi + β)

μ

̂μMAP
α − 1

α + β − 2
α′ − 1

α′ + β′ − 2

α′ = xi + α
β′ = (Ni − xi) + β

̂μMAP =
xi + α − 1

Ni + α + β − 2

38

Section 3.3 in Murphy (2012).  
Machine Learning: A Probabilistic 
Perspective. MIT Press

α′ β′ 

Posterior

MAP

1. Log of the posterior 
2. Take the derivative wrt to  
3. Equate to 0 
4. Solve for 

μ

μ



Mapping the Referee Example to Mutation Calling 

Data 
Referees  
For each Referee  

• Coin Tosses:   
• Count of heads:  
• Count of tails:  

Parameters 
Probability to draw coins:  
Probability of heads for 3 types of coins  

 
Responsibilities 
Probability that Referee  used coin : 

1,…, T
i
Ni

xi
Ni − xi

πfair, πheads, πtails

μfair, μheads, μtails

i k γ(Zi = k)

39

Data 
Genomic loci  
For each locus  

• Depth (total reads):   
• Count of reference reads:  
• Count of variant reads:  

Parameters 
Probability of genotypes:  
Probability of reference base for 3 genotypes:  

 
Responsibilities 
Probability that locus  has genotype : 

1,…, T
i

Ni
xi

Ni − xi

πAA, πAB, πBB

μAA, μAB, μBB

i k γ(Zi = k)

Referee Coin Toss Example Mutation Calling from Sequencing Data



Mixture Models: Online Tutorial and Resource

fiveMinuteStats (https://stephens999.github.io/fiveMinuteStats/)  

by Dr. Matthew Stephens, Professor in Statistics & Human Genetics at University of Chicago 

1. Introduction to mixture models with probabilistic derivations and R code 

• Examples with Bernoulli and Gaussian models 

• https://stephens999.github.io/fiveMinuteStats/intro_to_mixture_models.html 

2. Introduction to EM with Gaussian Mixture Model example and R code 

• https://stephens999.github.io/fiveMinuteStats/intro_to_em.html 

40
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Homework #5: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2. 

• Learn the parameters and infer the genotypes  

• Annotate the mutation status for a set of genomic loci. 

• Expected outputs for each question will be provided so that you can check your code. 

• RStudio Markdown and Python Jupyter Notebook templates provided. 

Due: May 5th, 2022 

Office Hours with Anna-Lisa Doebley (adoebley@uw.edu) 

• Monday, May 4, 2-3pm 

• Wednesday, May 6, 2-3pm
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