CANCER GENOMICS

Lecture 1: Introduction to Cancer Genome Analysis

GENOME 541 Spring 2022 April 26, 2022

FRED HUTCH CURES START HERE® **Gavin Ha, Ph.D.** Public Health Sciences Division Human Biology Division

@GavinHa gha@fredhutch.org https://github.com/GavinHaLab GavinHaLab.org

Overview of Cancer Genomics Module

1. Introduction to Cancer Genome Analysis

2. Probabilistic Methods for Mutation Detection

3. Probabilistic Methods for Profiling Copy Number Alteration

4. Additional Topics: Tumor Heterogeneity, Mutation Detection Power, Structural Variation

Homework Assignments and Office Hours

TA for Module: Anna-Lisa Doebley (adoebley@uw.edu)

Homework #5

Due: May 5th

Virtual Office Hours

• Week of May 2

Homework #6

Due: May 12th

Virtual Office Hours

• Week of May 9

Date/Time and Zoom link will be provided in Class

Outline: Introduction to Cancer Genome Analysis

1. Intro to Cancer Genome Alterations

- Genomic alterations in cancer: drivers vs passengers, somatic vs germline
- Tumor evolution and heterogeneity

2. Overview of Cancer Genome Analysis

- Computational strategy and workflow
- Tumor DNA Sequencing
- Types of genomic alterations predicted from tumor sequencing
- Methods/tools/algorithms in following lectures

3. Primer on statistical modeling

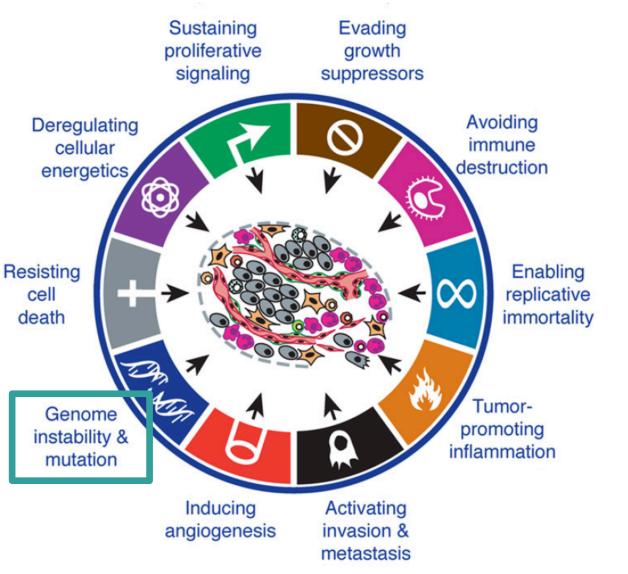
• Binomial probability distribution, Bayesian statistics, parameter learning

The hallmarks of cancer

 All cancers exhibit many of these hallmarks that lead to tumor growth

Genome instability & mutation

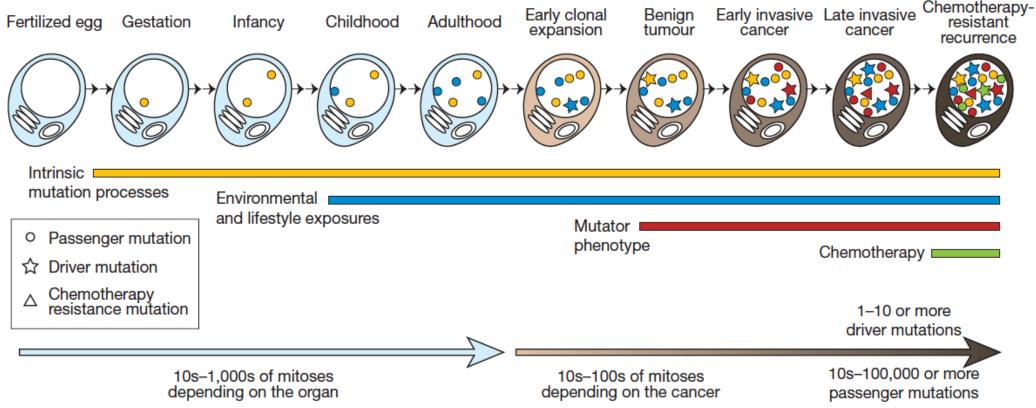
is an enabling characteristic that can result in multiple hallmarks



Cancer is a disease of the genome

Cancer progression results from **mutations** acquired throughout lifetime

- Few driver mutations, many passenger mutations
- Mutational process can be intrinsic and from environmental mutagens



Genomic Variation: Somatic and Germline

Variant or Mutation or Alteration or Polymorphism

• Changes in the genome sequence of a sample compared to a reference sequence

Germline Variant

- Chromosomes: 22 autosomal pairs + 1 sex pair
 - Each set inherited from maternal and paternal germline cells
- Variant inherited from one or both parental chromosomes
- Source of genetic differences between ancestral populations and individuals
- Polymorphism: >1% frequency in a population

Somatic Variant

- Mutation acquired during individual's lifetime
- Important to identify in sporadic cancers and other non-familial diseases

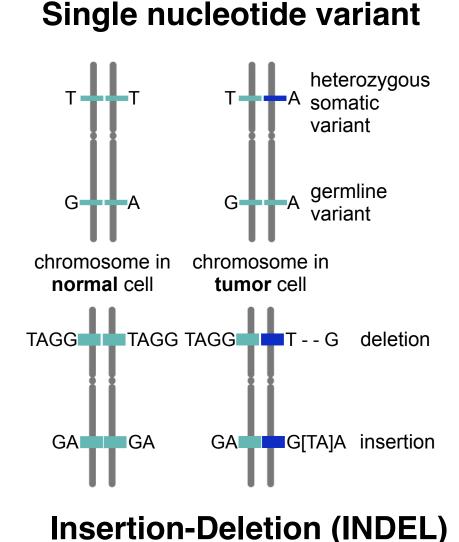
Types of Genomic Variation: Small/Short mutations

1. Single nucleotide base substitutions

- Germline single nucleotide polymorphism (SNP)
- Somatic single nucleotide variant (SNV)

2. Small insertions or deletions

- Germline or somatic insertion or deletion (INDEL)
- Small indels: 1 bp 20 bps
- Large indels: 20 10,000 bps



FRED HUTCH

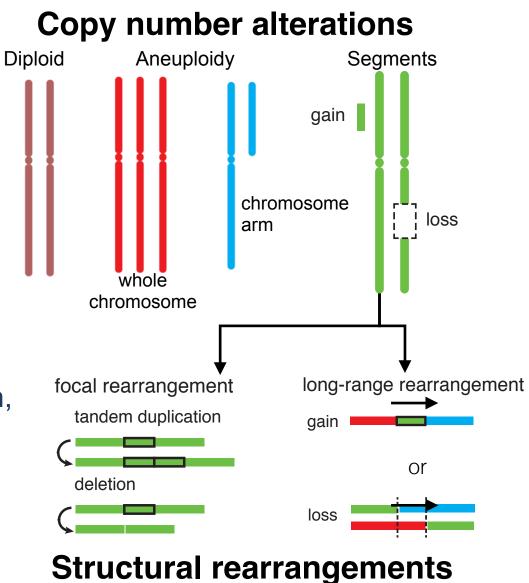
Types of Genomic Variation: Large alterations

3. Copy number changes

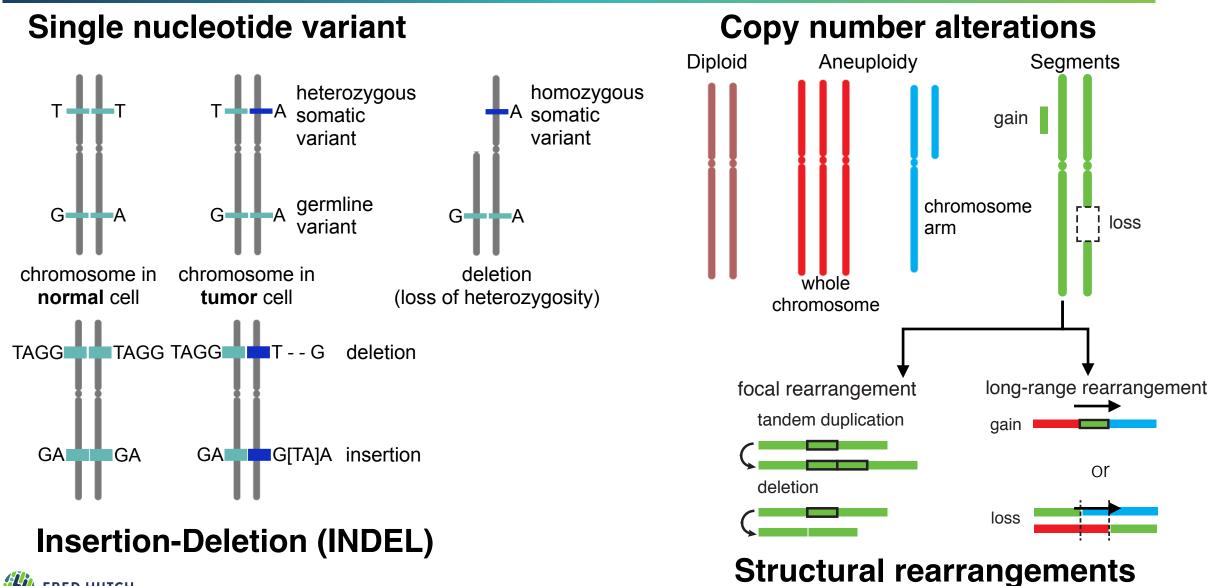
- Germline copy number variant (CNV) or polymorphism (CNP)
- Somatic copy number variant (CNV) or alterations (CNA)
- Size > 1 kbps, typically mega-bases (depending on resolution)
- 4. Structural rearrangements

FRED HUTCH

- Germline or Somatic structural variant (SV)
- Simple events: deletion, duplication, inversion, translocation
- Single nucleotide resolution for breakpoints
- Size > 20 bps, typically kilo-bases to megabases



Types of Genomic Variation in Cancer



FRED HUTCH

10

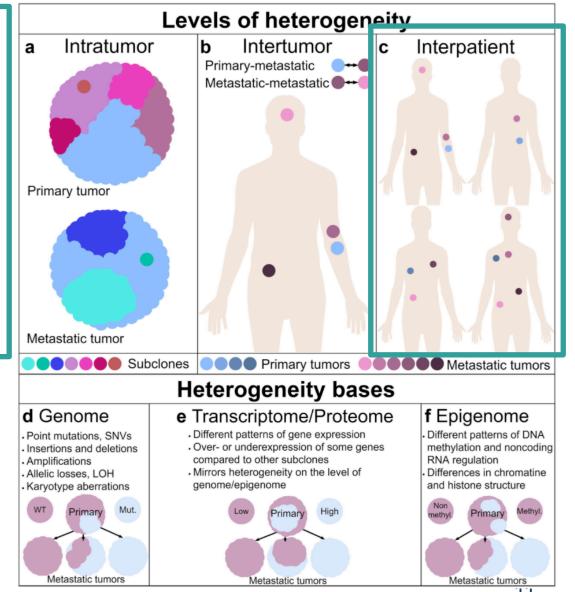
Tumors exhibit different levels of heterogeneity

Across patient populations:

- 1. **Cancer types**: between primary tumors of different organs or tissue-of-origin (eg. Breast and lung cancers)
- 2. **Tumor subtypes**: between subset of patients with tumors having similar molecular features (e.g. ER+ and ER- breast cancers)
- 3. **Same-subtype**: between tumors from different patients

Within an individual patient:

- 4. Inter-tumor: between tumors within a patient
- 5. Intra-tumor heterogeneity: between cells within a tumor lesion (e.g. tumor clones, stromal cells, infiltrating lymphocytes)

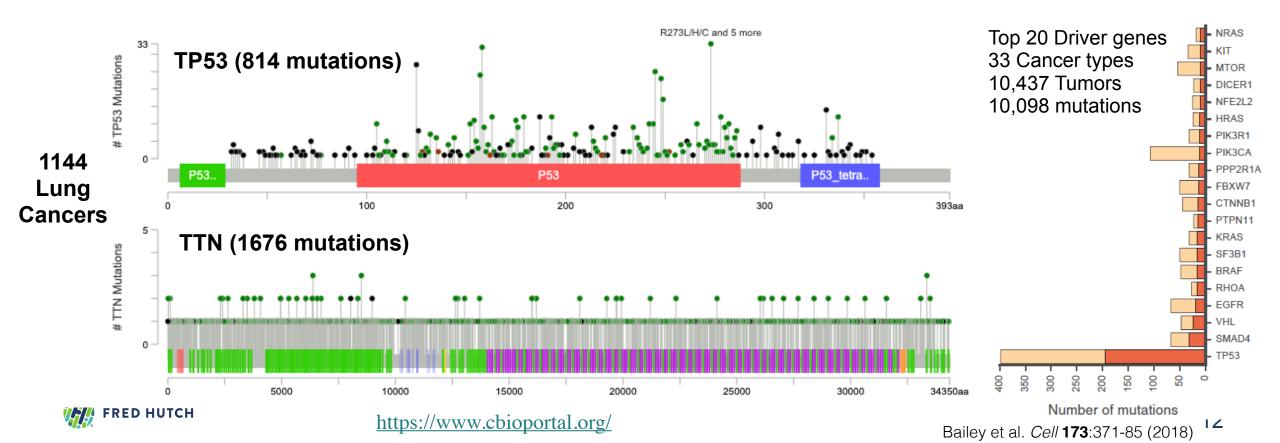


Grzywa et al. *Transl Oncol.* **10**:956-75 (2017)

Cancer Genes: Driver vs Passenger Genomic Alterations

How do we find the mutated genes that *drive* cancer?

- Significantly Mutated Genes: recurrently mutated genes in patient cohorts
- Account for covariates (e.g. gene length, expression, replication timing)



Tumors exhibit different levels of heterogeneity

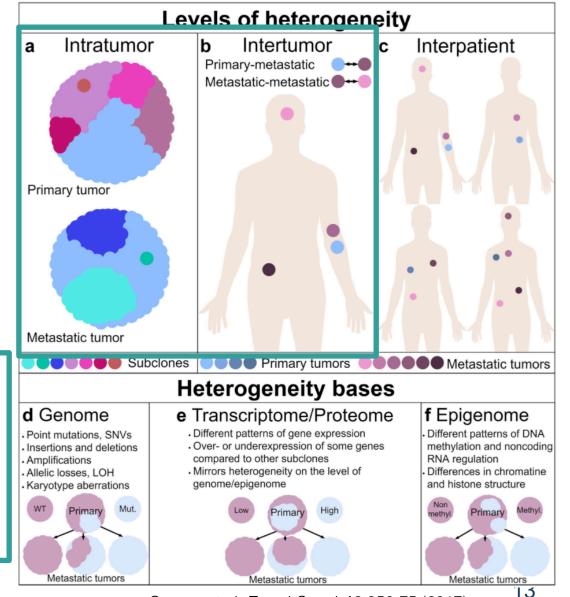
Across patient populations:

- 1. **Cancer types**: between primary tumors of different organs or tissue-of-origin (eg. Breast and lung cancers)
- 2. **Tumor subtypes**: between subset of patients with tumors having similar molecular features (e.g. ER+ and ER- breast cancers)
- 3. **Same-subtype**: between tumors from different patients

Within an individual patient:

FRED HUTCH

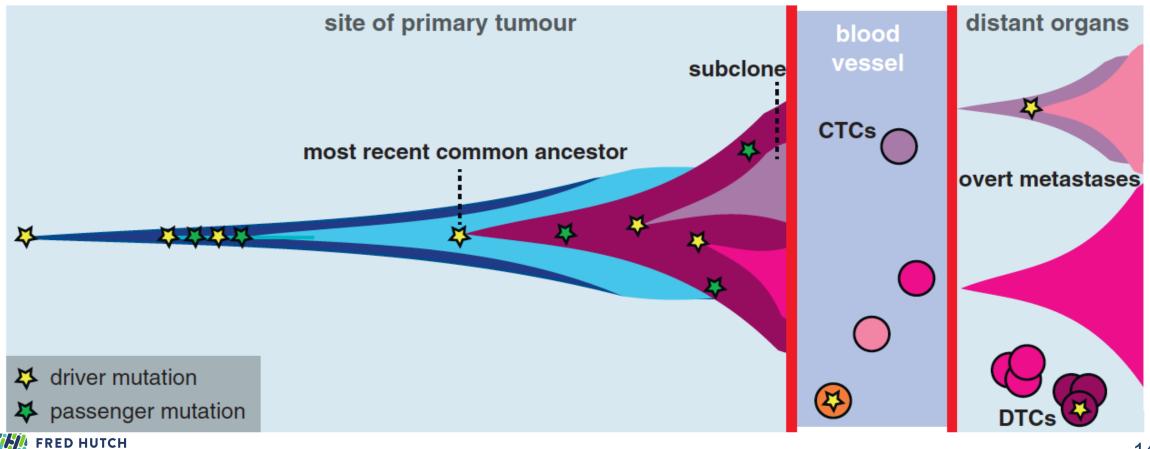
- 4. Inter-tumor: between tumors within a patient
- 5. **Intra-tumor heterogeneity**: between cells within a tumor lesion (e.g. tumor clones, stromal cells, infiltrating lymphocytes)



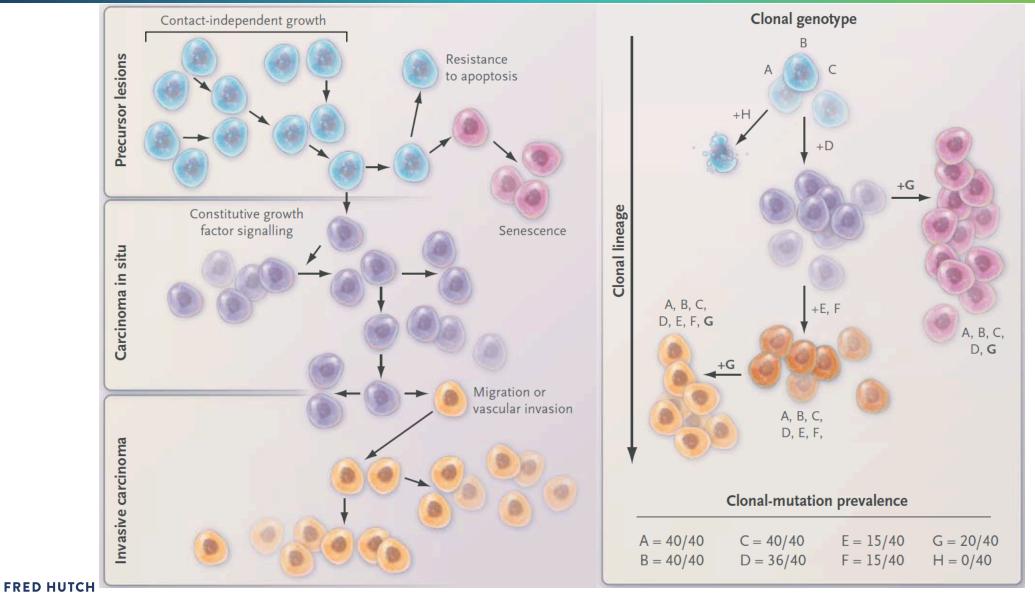
Grzywa et al. *Transl Oncol.* **10**:956-75 (2017)

Tumors undergo genome evolution and clonal expansion

- Clonal diversity may have implications for treatment resistance
- Dynamics of clones can change in the blood and metastases

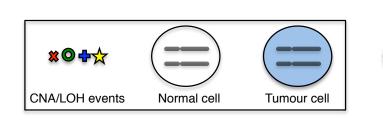


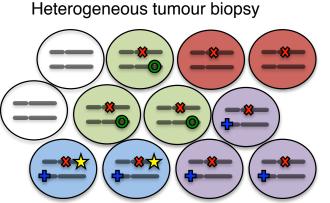
Tumor genome evolution selects for cellular phenotypes

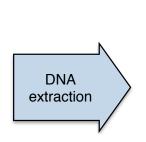


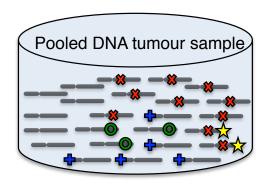
Aparicio & Caldas. NEJM. 368:842-51 (2013)

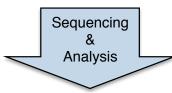
Inferring intra-tumor genomic heterogeneity from sequencing









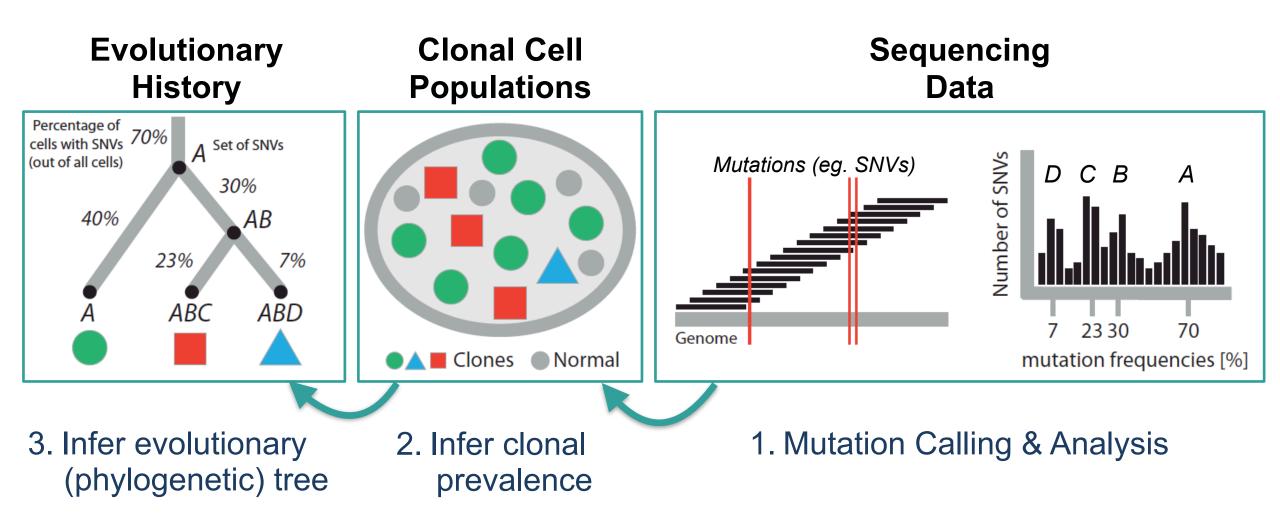


- Combined signals from normal and multiple populations of tumor cells.
- Cellular prevalence: proportion of tumor cells harboring event
- Discuss further in Lecture 4...

Subclonal events Cellular prevalence * 100% * 50%

- 30%
- ☆ 20%

Inferring evolutionary history of a tumor from sequencing

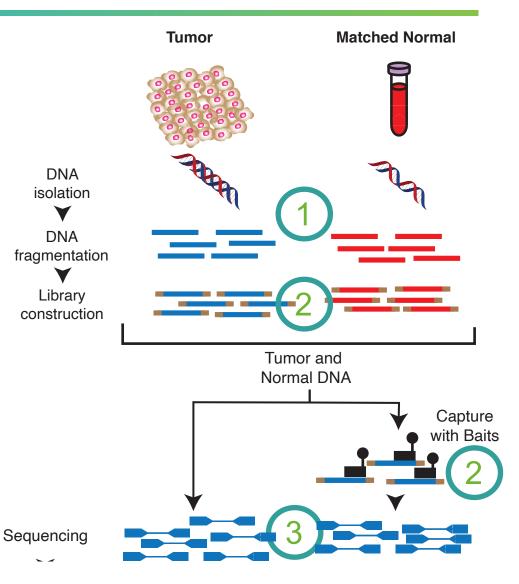


2. Overview of Cancer Genome Analysis

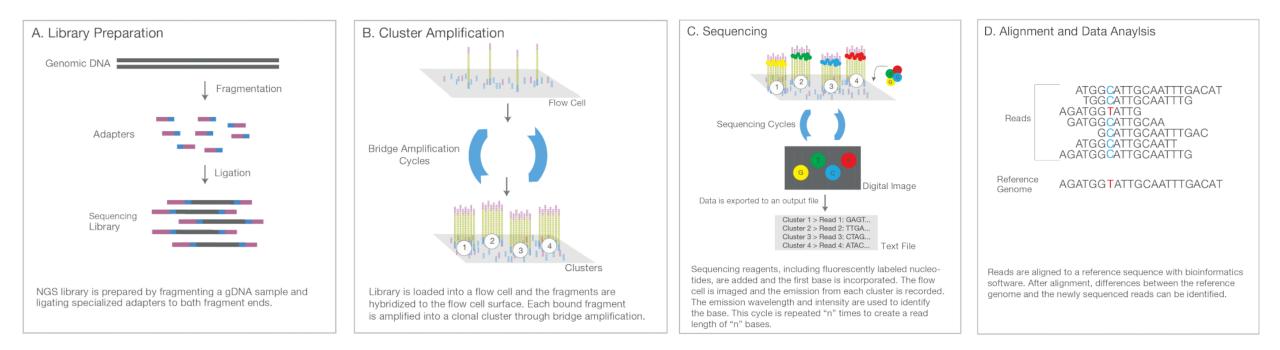
- Computational strategy and workflow
- Tumor DNA sequencing
- Whole genome vs whole exome vs targeted sequencing
- Types of genomic alterations predicted from tumor sequencing
- Methods/tools/algorithms in following lectures

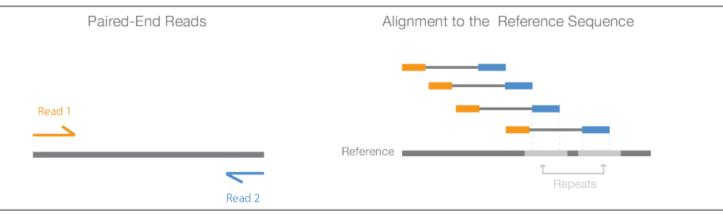
General Workflow of Tumor Genome Sequencing (1)

- Tumor and Normal pairing
 - Distinguish somatic and germline alterations
- Capture baits can be used to select regions
 - e.g. whole exome or targeted gene panels
- Potential sources of error can arise
 1. 8-oxoG transversions (C>A/G>T)
 2. PCR errors and GC content bias
 - 3. Sequencing errors



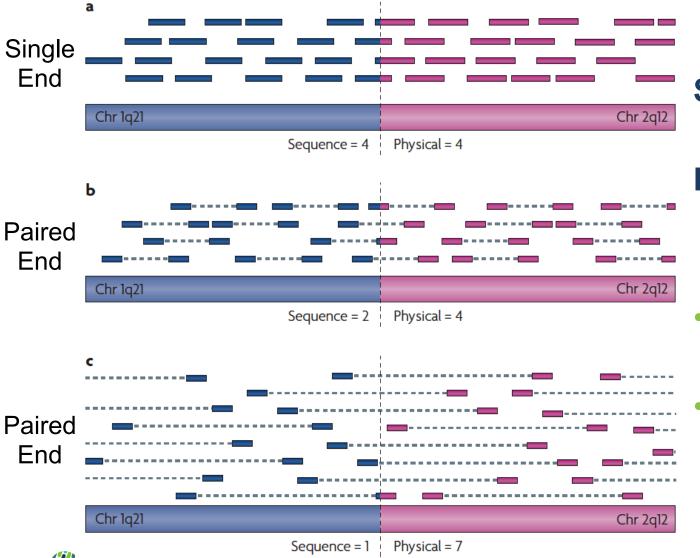
Genome Sequencing: Massively Parallel Sequencing





https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf

Genome Sequencing: Sequence vs Physical Coverage

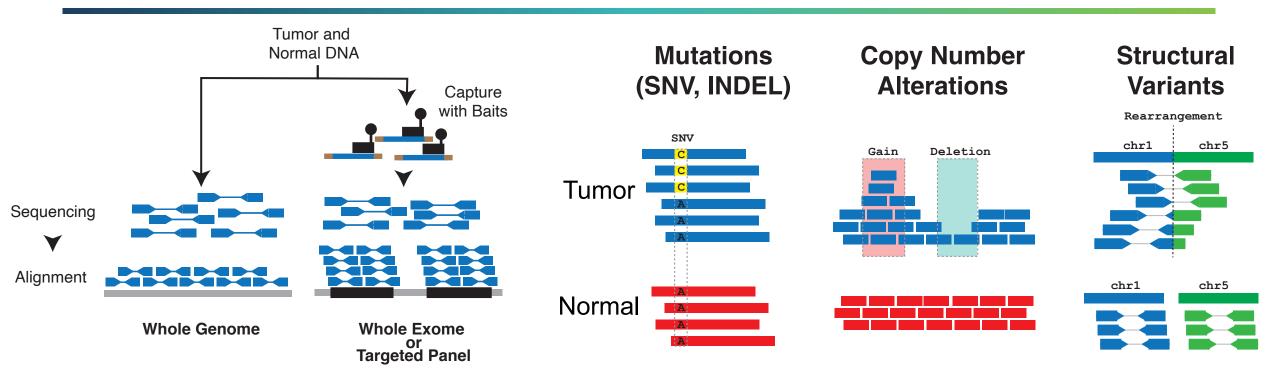


ED HUTCH

Sequence Coverage = number of
 sequenced reads spanning locus
Physical Coverage = number of
 DNA fragments spanning locus

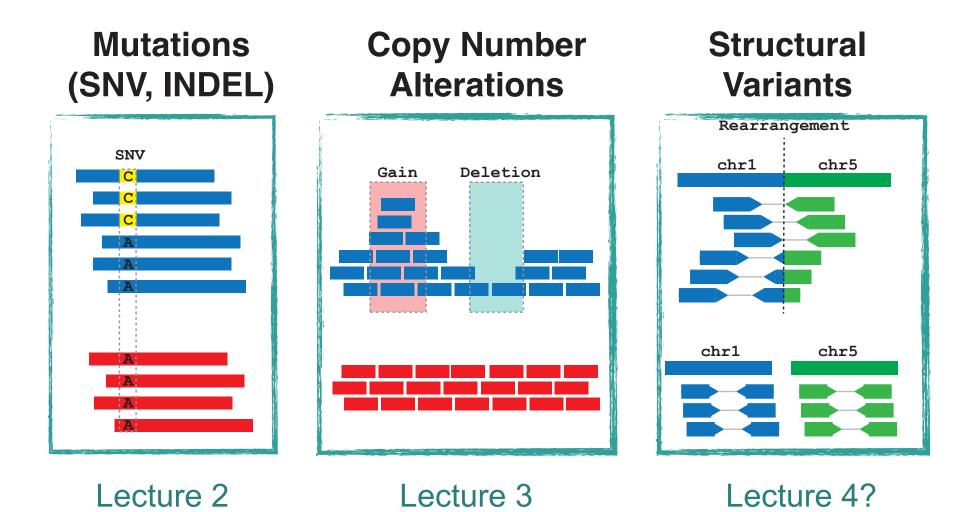
- Mutation detection rely on sequence coverage
- Rearrangement detection rely on both

General Workflow of Tumor Genome Sequencing (2)



	Whole Genome Sequencing	Whole Exome Sequencing	Targeted Gene Sequencing
	 Genome-wide (unbiased) 	Exons (2% of genome)	Target regions (1-5Mb)
	 0.1-100x genome coverage 	 50-500x target coverage 	100-25000x target coverage
	 More sequencing required 	 Less sequencing required 	 Least sequencing required
	 Expensive 	Cost-effective	Panel design costs
	 Coding/Non-coding mutations 	 Coding mutations (all genes) 	 Coding mutations (selected)
150 b	 Copy number alterations 	 Copy number alterations 	 Targeted rearrangements
FREI	 Structural variation 	 Gene fusions rearrangements 	

Types of Genomic Alterations Predicted from Sequencing



Genome Sequencing: International Consortia & Projects

1000 Genomes Project (<u>https://www.internationalgenome.org/</u>)

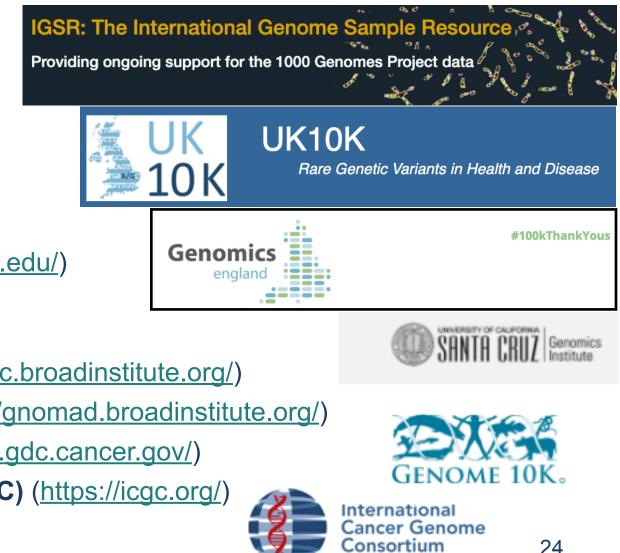
UK10K (https://www.uk10k.org/)

- The 100,000 Genomes Project (https://www.genomicsengland.co.uk/)
- Rare disease, cancer, infectious disease

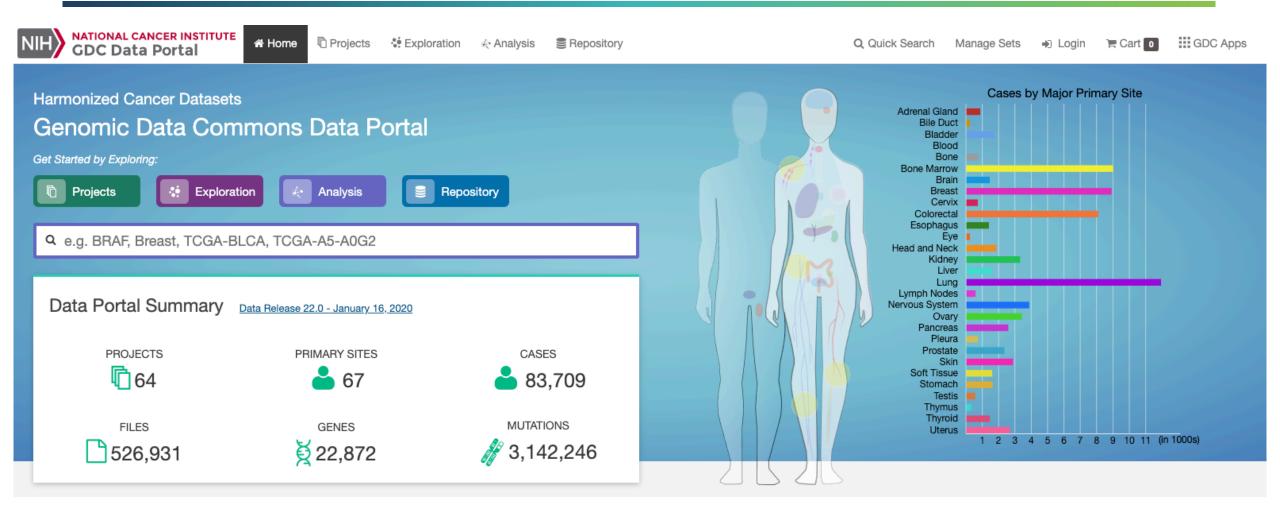
Genome 10K Project (https://genome10k.soe.ucsc.edu/)

• Genomic "zoo" of 16,000 vertebrate species

Exome Aggregation Consortium (ExAC) (<u>http://exac.broadinstitute.org/</u>) Genome Aggregation Database (gnomAD) (<u>https://gnomad.broadinstitute.org/</u>) **The Cancer Genome Atlas (TCGA)** (<u>https://portal.gdc.cancer.gov/</u>) **International Cancer Genome Consortium (ICGC)** (<u>https://icgc.org/</u>)



Cancer Genome Sequence Data: Databases & Online Resources

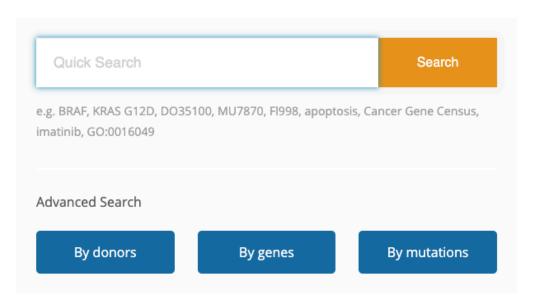


Cancer Genome Sequence Data: Databases & Online Resources

FOR CANCER GENOMI	3	
Query Quick Search	Beta! Download Please cite: Cerami et al., 2012 & Gao et al.,	2013 What's New @cbiopo
		CBioPortal @cbioportal
Select Studies for Visu	alization & Analysis: 0 studies selected (0 samples) Search	We are hosting a webinar series to teach cBio
PanCancer Studies	3 Quick select: TCGA PanCancer Atlas Studies Curated set of non-redundant studies	features to beginner and advanced users. Ses will be held on five consecutive Thursdays at 1
Cell lines	3 PanCancer Studies	EDT, starting on April 30th. Please register her bit.ly/cbioportal-web
Adrenal Gland	3 MSK-IMPACT Clinical Sequencing Cohort (MSKCC, Nat Med 2017) 10945 samples 🖲 🖉 🤤	
Ampulla of Vater	□ Pan-Lung Cancer (TCGA, Nat Genet 2016) 1144 samples ④ 昼 € 1 □ Pediatric Pan-cancer (Columbia U, Genome Med 2016) 103 samples ⊕ ■ €	C BioDort
Ampulia or valer	1 Pediatric Pan-cancer (Columbia U, Genome Med 2016) 103 samples 0 🖉 🤄	Sign up for low-volume email news alert
Biliary Tract	9 Cell lines	Subscribe
Bladder/Urinary Tract	15 Cancer Cell Line Encyclopedia (Broad, 2019) 1739 samples 0 a 6	
Bone	□ Cancer Cell Line Encyclopedia (Novartis/Broad, Nature 2012) 1020 samples ① 월 € 2 □ NCI-60 Cell Lines (NCI, Cancer Res 2012) 67 samples ① 월 €	Cancer Studies
Bowel	10 Adrenal Gland	The portal contains 283 cancer studies (details)
		Cases by Top 20 Primary Sites
Breast	16 Adrenocortical Carcinoma □ Adenoid Cystic Carcinoma Project (2019) 1049 samples ⊕	Breast Prostate
CNS/Brain	19 Adrenocortical Carcinoma (TCGA, Firehose Legacy) 92 samples 0 = 4	CNS/Brain
Cervix	2 Adrenocortical Carcinoma (TCGA, PanCancer Atlas) 92 samples 6	Lung
Esophagus/Stomach	14 Ampulla of Vater	Lymphoid Bowel Bowel
Eye	Ampullary Carcinoma	Kidney
,	Ampullary Carcinoma (Baylor College of Medicine, Cell Reports 2016) 160 samples 🕄 🖉 😓	Stomach Myeloid
Head and Neck	Biliary Tract	Bladder
Kidney	17 Cholangiocarcinoma	Skin
Liver	8 Cholangiocarcinoma (MSK, Clin Cancer Res 2018) 195 samples 🔁 🖉 🤄	Uterus Head/Neck
Lung	Cholangiocarcinoma (National Cancer Centre of Singapore, Nat Genet 15 samples 🔁 🖨 🤤	Ovary
	21 Cholangiocarcinoma (National University of Singapore, Nat Genet 2012) 8 samples € € € Cholangiocarcinoma (TCGA, Firehose Legacy) 51 samples € € €	Thyroid
Lymphoid	20 Cholangiocarcinoma (TCGA, PanCancer Atlas) 36 samples 6 🖉 6	Liver PNS
Myeloid	9 Intrahepatic Cholangiocarcinoma (JHU, Nat Genet 2013) 40 samples 🔀 🖨 🗲	Adrenal Gland
Other	 → INTRAHEPATIC CHOLANGIOCARCINOMA 15 Intrahepatic Cholangiocarcinoma (Shanghai, Nat Commun 2014) 103 samples ⊕	Pancreas Soft Tissue
Ovary/Fallopian Tube	Gallbladder Cancer https://www.cbioportal.org/	0 2000 4000 6000 8000

Cancer Genome Sequence Data: Databases & Online Resources

Cancer genomics data sets visualization, analysis and download.



Data Release 28	March 27th, 2019	
Cancer projects	86	
Cancer primary sites	22	
Donor with molecular data in DCC	22,330	
Total Donors	24,289	
Simple somatic mutations	81,782,588	
🕹 Download Release		

3. Primer on statistical modeling

- Probability
 - Unsupervised learning, probability rules & Bayes' theorem
 - Binomial distribution, Bayesian statistics
 - Beta-binomial model example
- Mixture models, EM inference
- References:
 - Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
 - Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738
 - https://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall06/reading/bernoulli.pdf

Sequencing Data Analysis Requires Probabilistic Models

- Sequencing data contain uncertainty due to
 - Technical noise from imperfect measurements & errors
 - Biological features in the signal measurements
- How do we predict genomic alterations accounting for these features and noise?
 - Need approaches to learn the patterns of these features from the data...

Types of machine learning:

- Supervised: output data y, input data x, and training set $D = \{(x, y)\}$
 - Classification (*y* are labels), Regression (*y* is continuous)
- Unsupervised: Only given input data $D = \{x\}$, *learn the patterns of the data*

• E.g. clustering input data x into K clusters by estimating their assignments z

Let *X* be a random variable. The probability for the event X = x for some value *x* is p(X = x) or p(x) for short. Let *Y* be another random variable.

Probability Rules

- Sum rule: $p(X) = \sum_{Y} p(X, Y)$
- Product rule: p(X, Y) = p(Y|X)p(X) and p(Y, X) = p(X|Y)p(Y)

• Conditional Probabilities: $p(Y|X) = \frac{p(X, Y)}{p(X)}$

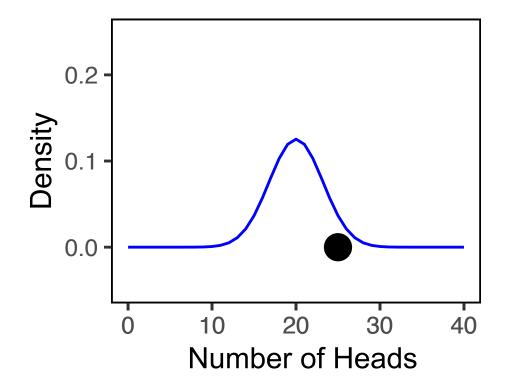
• Marginal Probabilities: $p(X) = \sum_{Y} p(Y, X) = \sum_{Y} p(X | Y) p(Y)$

Bayes' Theorem (rule):
$$p(Y|X) = \frac{p(X,Y)}{p(X)} = \frac{p(X|Y)p(Y)}{\sum_{Y'} p(X|Y')p(Y')}$$

Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- A referee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last season, once per game. We assume this coin was fair and had a probability µ = 0.5 for showing a head. We kept track of the number of heads x that appeared.
- What is the probability of seeing a specific number of heads? e.g. x = 25 out of N = 40 tosses



Probability distribution: Binomial

Binomial Distribution: Referee Coin Toss Example

- A referee has a coin that he uses to decide which team gets first possession. She tossed the coin N times last season, once per game. We assume this coin was fair and had a probability µ = 0.5 for showing a head. We kept track of the number of heads x that appeared.
- What is the probability of seeing a specific number of heads? e.g. x = 25 out of N = 40 tosses

Probability mass function

• Let *X* be the random variable representing the number of heads. If the probability of heads is μ , then *X* has a binomial distribution, $X \sim Bin(N, \mu)$ or $p(X = x | N, \mu) = Bin(x | N, \mu)$ where

$$Bin(x | N, \mu) = \binom{N}{x} \mu^{x} (1 - \mu)^{N - x}$$

 $\binom{N}{k}$

number of ways the 25 heads is observed among the sequence of 40 tosses.

• Our coin-toss example: for x = 25 out of N = 40 and a fair coin $\mu = 0.5$

$$p(X = 25 | N = 40, \mu = 0.5) = Bin(25 | 40, 0.5) = {\binom{40}{25}} 0.5^{25} (1 - 0.5)^{40 - 25}$$

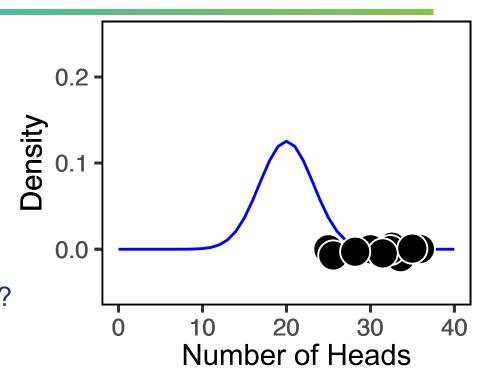
Binomial likelihood model

- Suppose there are *T* different referees who toss the same coin $N = \{1, ..., N_T\}$ times and come up with head counts $x = \{1, ..., x_T\}$.
- Assuming the referees' tosses are *independent* and *identically distributed* (**iid**), what is the probability of observing the head counts given the coin (e.g. $\mu = 0.5$)?

$$p(x_{1:T}|N_{1:T},\mu) = \prod_{i=1}^{T} Bin(x_i|N_i,\mu)$$
 Likelihood

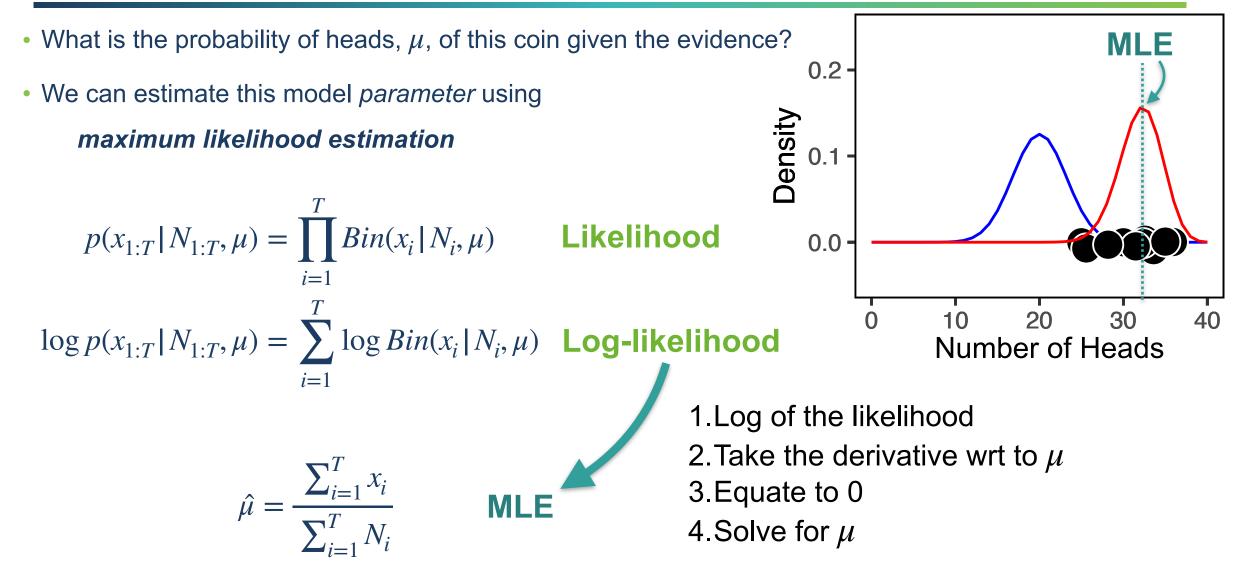
• What if the coin wasn't fair and the probability of heads, μ , might not be 0.5?

FRED HUTCH



	# of tosses (N)	# of heads (x)
Referee 1	40	25
Referee 2	42	35
Referee 3	39	27
Referee T	XT	NT

Maximum likelihood estimation (MLE)



Bayesian Statistics: Prior distribution for model parameters

Likelihood for Binomial Model

$$p(x_{1:T}|N_{1:T},\mu) = \prod_{i=1}^{T} Bin(x_i|N_i,\mu)$$
 Likelihood

- MLE uses the evidence to estimate parameter $\hat{\mu}$ but our sample size is small and MLE may **overfit**

	# of tosses (N)	# of heads (x)	Prop. of heads
Referee 1	40	25	0.63
Referee 2	42	35	0.83
Referee 3	39	27	0.69
Referee T	XT	NT	x _T /N _T

- Zero count or sparse data problem: If you have a bad record keeper who only tallies coin tosses from referees who never tosses a tail, then does that mean the concept of tails on a coin does not exist at all?
- Can we capture a more natural expectation of how a coin might behave? Also, what if we have some knowledge that the coin might be biased?

Prior Distribution for binomial parameter, μ

- The proportion of heads is between 0 and 1 ($\mu \in [0,1]$) and can be sampled from a distribution itself
- μ can be drawn from a Beta distribution, which is in the interval [0,1], with **hyper-parameters** α and β

 $\mu \sim Beta(\alpha, \beta)$ $p(\mu) = Beta(\mu \mid \alpha, \beta) \quad \text{Prior}$

Bayesian statistics: Posterior for Beta-Binomial Model (1)

Binomial likelihood and Beta prior

• *T* different head counts $x = \{1, ..., x_T\}$ for $N = \{1, ..., N_T\}$ sets of tosses and a *prior* distribution on μ (prob. of heads)

$$p(x_{1:T}|N_{1:T},\mu) = \prod_{i=1}^{T} Bin(x_i|N_i,\mu)$$
 Likelihood
$$p(\mu) = Beta(\mu \mid \alpha, \beta)$$
 Prior

- To estimate parameter μ in a Bayesian framework
 - We need the *posterior*, $p(\mu | \mathbf{x})$, but only have $p(\mathbf{x} | \mu)$ and $p(\mu)$
- Recall Bayes' Theorem:

$p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y'} p(X|Y')p(Y')} \propto p(X|Y) \ p(Y)$ **Posterior** Likelihood Prior

• The *posterior* is our *belief state* by combining evidence from observations and our prior beliefs.

Bayesian statistics: Posterior for Beta-Binomial Model (2)

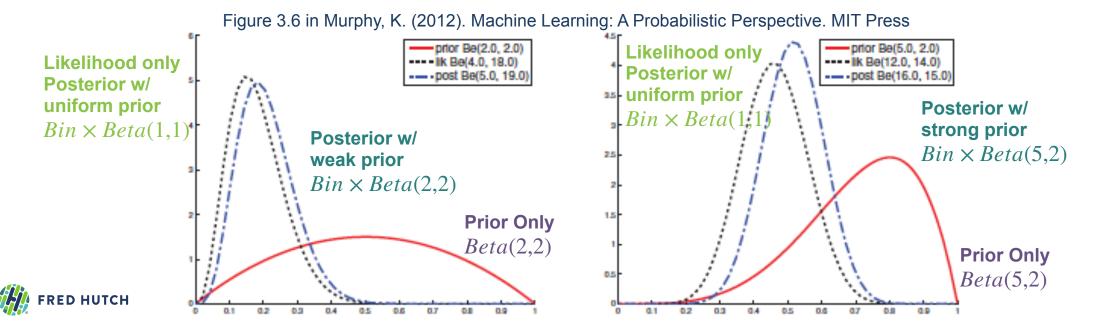
Beta-Binomial Model: Posterior distribution

• To estimate the model parameter μ in a Bayesian framework, we compute the **posterior**, $p(\mu | x)$

 $p(\mu | x_i) \propto Bin(x_i | N_i, \mu) \times Beta(\mu | \alpha, \beta)$

• Beta is a conjugate prior for the binomial; the product of binomial and Beta has the form of a Beta

 $p(\mu | x_i) \propto Bin(x_i | N_i, \mu) \times Beta(\mu | \alpha, \beta) = Beta(\mu | x_i + \alpha, N_i - x_i + \beta)$ **Likelihood Prior Posterior**



Bayesian statistics: MAP estimate

Beta-Binomial Model: Posterior distribution

$$p(\mu | x_i) \propto Bin(x_i | N_i, \mu) \times Beta(\mu | \alpha, \beta) = Beta(\mu | x_i + \alpha, N_i - x_i + \beta)$$
Posterior

• Then, what is the probability of heads, μ , of this coin given the **evidence** and the **prior**?

Maximum a posteriori (MAP) estimate

- From the posterior, we can estimate the parameter using the *maximum a posteriori (MAP*), $\hat{\mu}_{MAP}$
- MAP refers to the mode of the posterior distribution and the mode of a Beta is $\frac{\alpha 1}{\alpha + \beta 2}$
- Since the posterior has the form of a Beta distribution, then the MAP is $\frac{\alpha'-1}{\alpha'+\beta'-2}$

Section 3.3 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

$$\hat{\mu}_{MAP} = \frac{x_i + \alpha - 1}{N_i + \alpha + \beta - 2}$$

 $\alpha' = x_i + \alpha$

 $\beta' = (N_i - x_i) + \beta$

MAP

1

01

- 1. Log of the posterior
- 2. Take the derivative wrt to μ
- 3. Equate to 0
- 4. Solve for μ

Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

<u>Data</u>

Referees $1, \ldots, T$

For each Referee i

- Coin Tosses: N_i
- Count of heads: *x_i*
- Count of tails: $N_i x_i$

Parameters

Probability to draw coins: π_{fair} , π_{heads} , π_{tails} Probability of heads for 3 types of coins μ_{fair} , μ_{heads} , μ_{tails} Responsibilities

Probability that Referee *i* used coin k: $\gamma(Z_i = k)$

Mutation Calling from Sequencing Data

<u>Data</u>

Genomic loci $1,\ldots,T$

- For each locus i
 - Depth (total reads): N_i
 - Count of reference reads: x_i
 - Count of variant reads: $N_i x_i$

Parameters

```
Probability of genotypes: \pi_{AA}, \pi_{AB}, \pi_{BB}
Probability of reference base for 3 genotypes:
\mu_{AA}, \mu_{AB}, \mu_{BB}
```

Responsibilities

Probability that locus i has genotype k: $\gamma(Z_i = k)$

Mixture Models: Online Tutorial and Resource

fiveMinuteStats (https://stephens999.github.io/fiveMinuteStats/)

by Dr. Matthew Stephens, Professor in Statistics & Human Genetics at University of Chicago

1. Introduction to mixture models with probabilistic derivations and R code

- Examples with Bernoulli and Gaussian models
- <u>https://stephens999.github.io/fiveMinuteStats/intro_to_mixture_models.html</u>
- 2. Introduction to EM with Gaussian Mixture Model example and R code
 - <u>https://stephens999.github.io/fiveMinuteStats/intro_to_em.html</u>

Homework #5: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.

Due: May 5th, 2022

Office Hours with Anna-Lisa Doebley (adoebley@uw.edu)

- Monday, May 4, 2-3pm
- Wednesday, May 6, 2-3pm

