CANCER GENOMICS Lecture 2: Probabilistic Methods for Mutation Detection

GENOME 541 Spring 2020

FRED HUTCH cures start here® Gavin Ha, Ph.D.

Public Health Sciences Division Human Biology Division

@GavinHa
gha@fredhutch.org
https://github.com/GavinHaLab
GavinHaLab.org

Outline

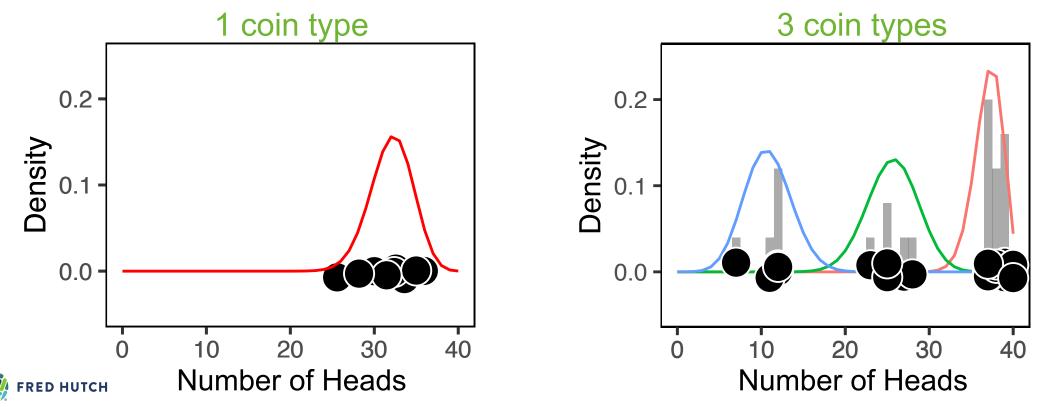
- 1. Primer on statistical modeling (cont'd)
 - Mixture models, inference and parameter estimation using the EM algorithm
- 2. Detecting Mutations in Cancer Genomes
 - Visualizing somatic vs germline SNVs
 - Sequencing read count data
- 3. Mixture Models for SNV Detection
 - SNV genotyping strategy
 - SNVMix probabilistic model and EM inference
 - Predicting somatic SNVs in cancer

1. Primer on statistical modeling (cont'd)

- Probability
 - Unsupervised learning, probability rules & Bayes' theorem
 - Binomial distribution, Bayesian statistics
 - Beta-binomial model example
- Mixture models, EM inference & parameter learning
- References:
 - Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN: 9780262018029
 - Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. ISBN: 0387310738

Mixture Model: Referee example with multiple coins

- Recall: There are *T* different referees who tossed the *same* coin $N = \{1, ..., N_T\}$ times and came up with counts of heads $x = \{1, ..., x_T\}$.
- Now suppose there are 3 types of coins: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as {*fair*, *heads*, *tails*}.
- Each referee draws one coin (with replacement) from a hat containing these coin types mixed together.



Mixture Model: Referee example with multiple coins

- Recall: There are *T* different referees who tossed the *same* coin $N = \{1, ..., N_T\}$ times and came up with counts of heads $x = \{1, ..., x_T\}$.
- Now suppose there are **3 types of coins**: (1) probably fair, (2) unfairly favors heads, (3) unfairly favors tails denoted as {*fair*, *heads*, *tails*}.
- Each referee draws one coin from a hat that contains a bunch of these coin types mixed together.
- 1. We don't know the proportion of each coin type in the hat.
- 2. We don't know which coin each referee drew from the hat.
- 3. We don't know the fairness (probability of heads) for each type of coin.

Referee	# of tosses (<i>N</i>)	# of heads (x)	Prop. of heads	Type of coin used?
Referee 1	40	25	0.63	?
Referee 2	42	35	0.83	?
Referee 3	39	27	0.69	?
Referee 4	XT	NT	x _T /N _T	?

Coin Type	Proportion in hat	Prob. of heads
"Fair"	?	?
"Heads"	?	?
"Tails	?	?

Mixture Model: Latent state model

1. What is the proportion of each coin type in the hat? Find the probability for drawing a coin type.

- π_k is the probability of drawing coin type $k \in \{fair, heads, tails\}$
- $\boldsymbol{\pi} = (\pi_{fair}, \pi_{heads}, \pi_{tails})$ are the *mixture weights* where $\sum_{k=1}^{K} \pi_k = 1$
- 2. Which coin did each referee draw? Define the latent variables.
- Let $Z_i = k$ be the type of coin that referee *i* draws
- Z_i is called a *latent variable* and follows a *Categorical* distribution with parameter π

$$p(Z_i = k \mid \pi_{1:K}) = Cat(Z_i = k \mid \pi_{1:K})$$

$$= \begin{cases} \pi_{fair} & \text{if } k = fair \\ \pi_{heads} & \text{if } k = heads \\ \pi_{tails} & \text{if } k = tails \end{cases}$$

• The proportions $\pi_{1:K}$ of the coin types follows a Dirichlet distribution (conjugate prior)

$$p(\pi_{1:K} | \delta_{1:K}) = Dirichlet(\pi_{1:K} | \delta_{1:K})$$

FRED HUTCH

Chapter 9 in Bishop (2006). Pattern M Recognition and Machine Learning

Section 11.2 in Murphy (2012).
Machine Learning: A Probabilistic
Perspective. MIT Press

Coin Type	Proportion in hat	Prob. of heads
"Fair"	π_{fair}	?
"Heads"	π_{heads}	?
"Tails	π_{tails}	?

Referee	Type of coin used?
Referee 1	Z_1
Referee 2	Z ₂
Referee 3	Z ₃
Referee T	Z_T

6

Mixture Model: Likelihood as a mixture of binomials

3. What is the fairness (prob. of heads) for each type of coin? Find the probability of heads for each coin type.

- Recall: for a single coin, $p(x_i | N_i, \mu) = Bin(x_i | N_i, \mu)$
- Define the likelihood for a 3-component mixture of binomials with 3 parameters,
 - $\mu_{fair}, \mu_{heads}, \mu_{tails}$, one for each type of coin

$$p(x_i | Z_i = k, N_i, \mu_{1:K}) = Bin(x_i | N_i, \mu_k)$$
$$p(x_i | N_i, \mu_{1:K}, \pi_{1:K}) = \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$

• Beta prior distribution
$$p(\mu_k | \alpha_k, \beta_k) = Beta(\mu_k | \alpha_k, \beta_k)$$

Log Likelihood Function of the Model

$$L(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$
$$\mathcal{C} = \sum_{i=1}^{T} \log\left(\sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)\right)$$

Coin Type	Proportion in hat	Prob. of heads
"Fair"	π_{fair}	μ_{fair}
"Heads"	π_{heads}	μ_{heads}
"Tails	π_{tails}	μ_{tails}

 $\sum_{k=1}^{K} \pi_k Bin(N, \mu_K)$ $0.2 \quad Bin(N, \mu_{tails}) \quad Bin(N, \mu_{fair})$ $0.1 \quad 0.0 \quad 0$

Section 3.3, 3.4, 11.2 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

7

Mixture model

Likelihood function

Log likelihood

Chapter 9 in Bishop (2006). Pattern Recognition and Machine Learning. Springer

Mixture Model: Inference & parameter estimation using EM (1)

Expectation-Maximization: Inference and parameter training

Initialize parameters: $\pi_{1:K}$ and $\mu_{1:K}$

- E-Step: compute "responsibilities" (inference)
- 1. Which coin did each referee draw?

(Posterior of the latent states $\gamma(Z_{1:T})$)

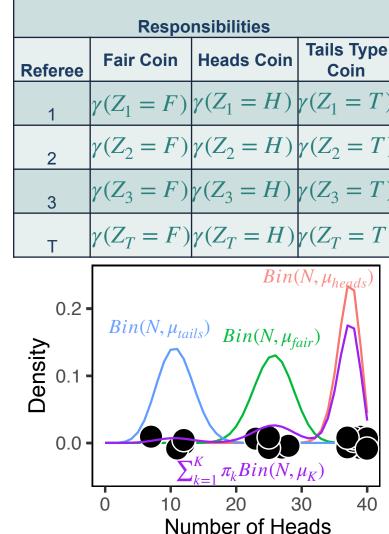
- Soft-clustering: Referee i has a probability for using each of the coins.
- responsibilities: "coin that is responsible for generating observation x_i "

M-Step: Update parameters (learning)

- 2. What is the proportion of each coin type in the hat? $\pi_{1:K}$
- 3. What is the fairness (prob. of heads) for each coin type? $\mu_{1:K}$

Iterate between E-Step and M-Step, check when log-likelihood ℓ stops increasing.

FRED HUTCH



Chapter 9 in Bishop (2006). Pattern Recognition and Machine Learning. Springer Section 3.3, 3.4, 11.2 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press 8

Mixture Model: Inference & parameter estimation using EM (2)

E-Step: compute responsibilities (inference)

1. What is the probability for a referee to draw each coin type? (Posterior of the latent states $Z_{1:T}$)

• Find the responsibilities given the current parameters

$$p(Z_i = k | x_i, N_i, \pi_{1:K}, \mu_{1:K}) = \frac{p(x_i | Z_i = k)p(Z_i = k)}{p(x_i)}$$
$$= \frac{\pi_k Bin(x_i | N_i, \mu_k)}{\sum_{k'=1}^K \pi_k' Bin(x_i | N_i, \mu_{k'})}$$
$$= \gamma(Z_i = k)$$

Bayes' Rule Posterior distribution of the latent variables

- **Responsibilities** Matrix $T \times K$
- Responsibilities = "coin that is responsible for generating observation x_i "
- Soft-clustering: Referee i has a probability for using each of the coins.
- $\gamma(Z_{1:T})$ is a matrix of probabilities with dimensions $T \times K$

Mixture Model: Inference & parameter estimation using EM (3)

M-Step: Update parameters (learning) 2. What is the proportion of each coin type in the hat?

$$\hat{\pi}_{k} = \frac{\sum_{i=1}^{T} \gamma(Z_{i} = k) + \delta(k) - 1}{\sum_{j=1}^{K} \sum_{i=1}^{T} \left\{ \gamma(Z_{i} = j) + \delta(j) - 1 \right\}}$$
 MA

MAP for π

3. What is the fairness (prob. of heads) for each coin type?

$$\hat{\mu}_k = \frac{\sum_{i=1}^T \gamma(Z_i = k) x_i + \alpha_k - 1}{\sum_{i=1}^T \gamma(Z_i = k) N_i + \alpha_k + \beta_k - 2}$$
 MAP for μ

Evaluate the log likelihood and log posterior: use updated parameters

Log posterior
$$\log \mathbb{P} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_k Bin(x_i | N_i, \hat{\mu}_k) \right) + \log Dir(\hat{\pi} | \delta) + \sum_{k=1}^{K} \log Beta(\hat{\mu}_k | \alpha_k, \beta_k)$$
Log likelihoodLog priors

Iterate between E-Step and M-Step:

• Stop EM when new $\log P$ changes less than e compared to previous EM iteration.

FRED HUTCH

Chapter 9 in Bishop (2006). Pattern Recognition and Machine Learning. Springer

Section 3.3, 3.4, 11.2 in Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press 10 Algorithm 1 Binomial Mixture Model Inference and Learning using EM

```
1: Inputs:
        Data: x_{1:T}, N_{1:T}
        Initial parameters: \pi_{1:K}^{(0)}, \mu_{1:K}^{(0)},
        Hyperparameters: \delta_{1:K}, \alpha_{1:K}, \beta_{1:K}
 2: Initialize:
        \pi_{1:K} \leftarrow \pi_{1:K}^{(0)}, \, \mu_{1:K} \leftarrow \mu_{1:K}^{(0)}
        \log P \leftarrow -Inf
 3:
 4: Compute the observed likelihood using initial parameters:
         lik \leftarrow compute.binom.lik()
 5:
 6: while converged = false do
        E-Step: Compute responsibilities:
 7:
             \gamma(Z_{1:T}) \leftarrow \text{compute.responsibilities()}
 8:
        M-Step: Update parameters:
 9:
             \hat{\pi}_{1:K} \leftarrow \texttt{update.pi()}
10:
             \hat{\mu}_{1:K} \leftarrow \texttt{update.mu()}
11:
        Assign updated parameters:
12:
13:
             \pi_{1:K} \leftarrow \hat{\pi}_{1:K}, \mu_{1:K} \leftarrow \hat{\mu}_{1:K}
        Re-compute the observed likelihood using updated parameters:
14:
             15:
        Compute the log-likelihood:
16:
             loglik \leftarrow compute.loglik()
17:
        Compute log Posterior:
18:
              19:
        if (\log P[curr.iter] - \log P[prev.iter] < \epsilon) then
20:
            converged = true
21:
        end if
22:
        logP[prev.iter] \leftarrow logP[curr.iter]
23:
24: end while
25: return Responsibilities \gamma(Z_{1:T}), Converged parameters \hat{\pi}_{1:K}, \hat{\mu}_{1:K}
```


Incomplete data log likelihood

$$L(x_{1:T}, N_{1:T} | \mu_{1:K}, \pi_{1:K}) = \prod_{i=1}^{T} \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$$

• The incomplete data log likelihood (plus the priors) is used to monitor EM convergence

Expected complete data log likelihood

• The expected complete data log likelihood is in the M-Step for updating parameters.

FRED HUTCH

Additional definitions for your reference

M-Step: Update the parameters given the responsibilities $\mathbb{P}(\pi_{1:K}, \mu_{1:K}) = Dir(\pi | \delta) \prod_{k=1}^{K} Beta(\mu_k | \alpha, \beta)$ Priors

> $\mathcal{O} = Q + \log \mathbb{P}(\pi_{1:K}, \mu_{1:K})$ Complete data log likelihood + log priors

• The object function \mathcal{O} is used to obtain the update equations for $\pi_{1:K}$ and $\mu_{1:K}$

$$\frac{\partial \mathcal{O}}{\partial \mu_k} = 0$$
, find $\hat{\mu}_k$ and $\frac{\partial \mathcal{O}}{\partial \pi_k} = 0$, find $\hat{\pi}_k$

EM Convergence: after each iteration, monitor the log posterior

$$\mathscr{C} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \pi_k Bin(x_i | \mu_k, N_i) \right)$$
Incomplete Data
Log likelihood

 $\log \mathbb{P}(\pi_{1:K}, \mu_{1:K} | x_{1:T}) = \ell + \log \mathbb{P}(\pi_{1:K}, \mu_{1:K}) \quad \text{Log posterior}$

• If the log posterior, $\log \mathbb{P}(\pi_{1:K}, \mu_{1:K} | x_{1:T})$, stops increasing by ϵ , then EM is converged.

FRED HUTCH

• If not using a Bayesian framework, then use the log likelihood, ℓ , to monitor convergence.

Additional definitions for your reference

Mixture Models: Online Tutorial and Resource

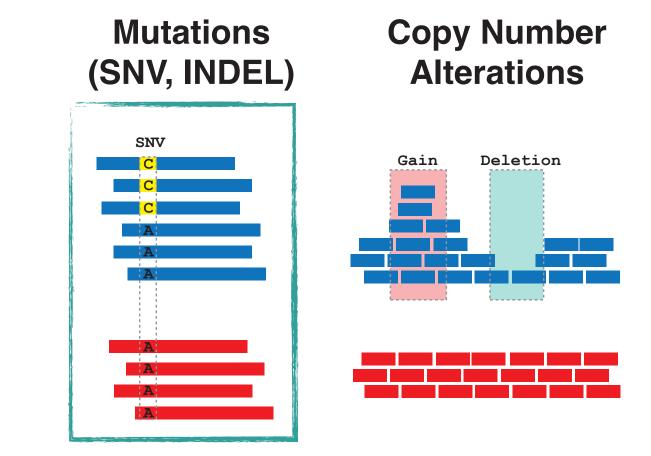
fiveMinuteStats (https://stephens999.github.io/fiveMinuteStats/)

by Dr. Matthew Stephens, Professor in Statistics & Human Genetics at University of Chicago

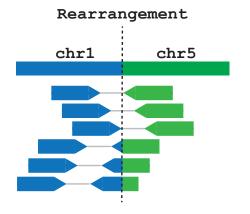
1. Introduction to mixture models with probabilistic derivations and R code

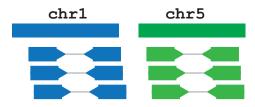
- Examples with Bernoulli and Gaussian models
- <u>https://stephens999.github.io/fiveMinuteStats/intro_to_mixture_models.html</u>
- 2. Introduction to EM with Gaussian Mixture Model example and R code
 - <u>https://stephens999.github.io/fiveMinuteStats/intro_to_em.html</u>

2. Detecting Mutations in Cancer Genomes



Structural Variants

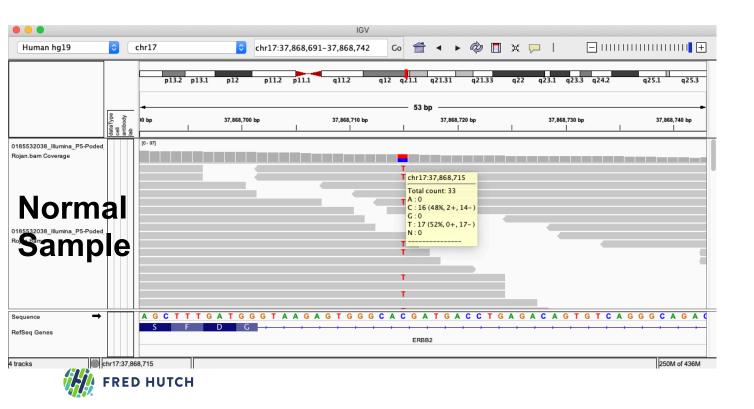




Visual inspection using IGV: Germline SNVs

Integrative Genomics Viewer (<u>https://software.broadinstitute.org/software/igv</u>)

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)



Heterozygous SNP with 17 reads containing the variant and having depth 33 reads

17/33 (48%) variant allele fraction (VAF)

Visual inspection using IGV: Germline SNVs

Integrative Genomics Viewer (https://software.broadinstitute.org/software/igv)

chr17

37.868.700 bp

Human hg19

chr17:37,868,691-37,868,742

37,868,720 bp

p11.2 g11.1 g12 g21.2 g21.32

37.868.710 b

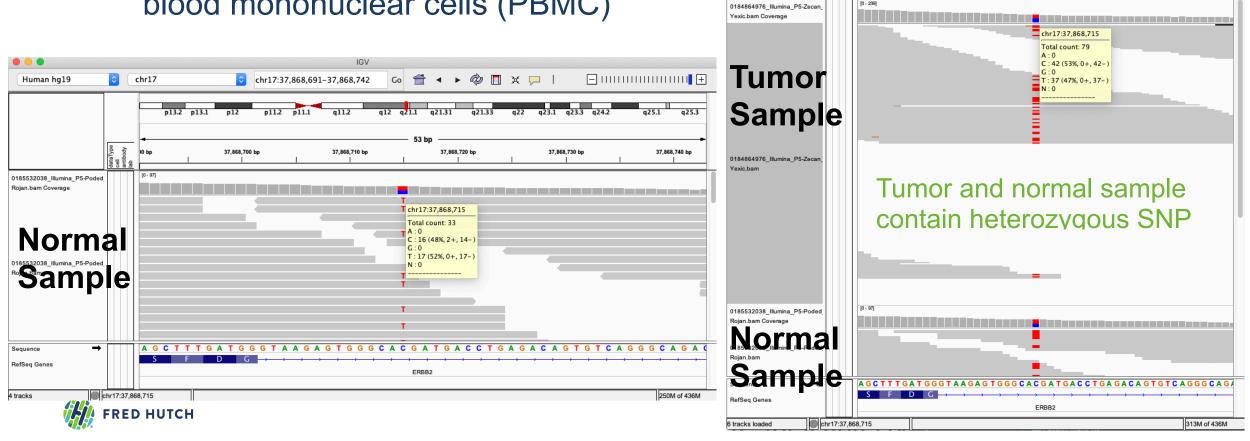
Go

37.868.730 br

à 🗖

37,868,740

- ~1.5 to 2 million SNPs per individual
- Identify SNPs from normal peripheral blood mononuclear cells (PBMC)



Visual inspection using IGV: Somatic SNVs

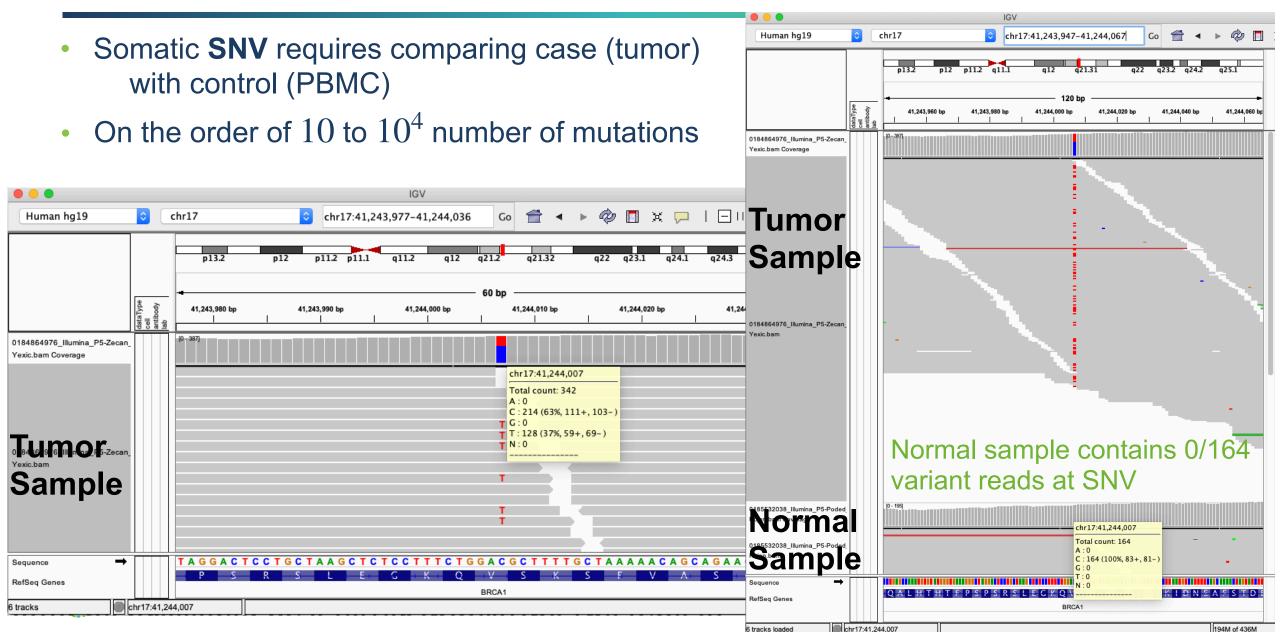
- Somatic SNV requires comparing case (tumor) with control (PBMC)
- On the order of 10 to 10^4 number of mutations

		IGV	
Human hg19)	:hr17 📀 chr17:41,243,977-41,244,036 Go 👚 ◄ 🛷 🖪 💥 🖵 🗖 !!	
		p13.2 p12 p11.2 p11.1 q11.2 q12 q21.2 q21.32 q22 q23.1 q24.1 q24.3	q25.2
	dataType cell antibody lab		4,030 bp
0184864976_Illumina_P5-Zecan_ Yexic.bam Coverage		[0 - 387] chr17:41,244,007	
		Total count: 342 A : 0 C : 214 (63%, 111+, 103-) T G : 0	
Tumor-zecan Yexic.bam Sample		T T : 128 (37%, 59+, 69-) T N : 0	
Sample		Ţ	
Sequence -		TA G G A C T C C T G C T A A G C T C T C C T T T C T G G A C G C T T T T G C T A A A A A C A G C A G A A	
RefSeq Genes			S E +
	chr17:41,24	BRCA1	358M of 436M

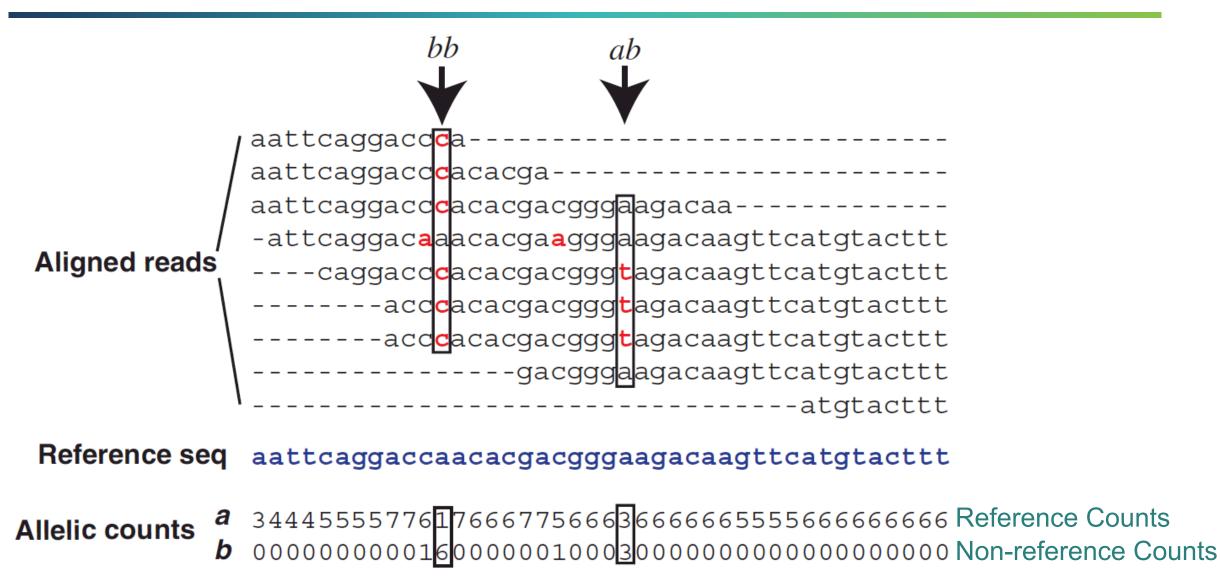
Potential SNV with 128/342 (37%) VAF

p.V1181I

Visual inspection using IGV: Somatic SNVs

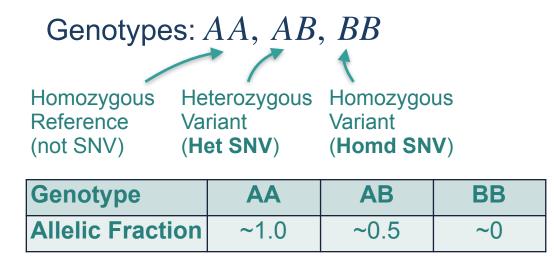


Single Nucleotide Variant (SNV) Calling: Single Sample



SNV Variant Allele Fraction and Genotypes

Variant Allele Fraction (VAF) Analysis



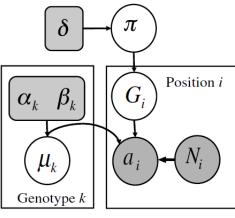
- Allelic Fraction is defined as the fraction of reference reads, $\frac{A}{N}$, where depth N = A + B
- Values in the table are the *expected* proportions of *reference reads* for each genotype
- Why might the observed allelic fractions be different than the expected values?

3. Mixture Model for SNV Detection

- SNVMix probabilistic model and EM inference
- Predicting somatic SNVs in cancer

References:

- Goya et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. *Bioinformatics* 26:730-36 (2010)
- Roth et al. **JointSNVMix**: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. *Bioinformatics* **28**:907-13 (2012)



SNVMix1 model

Mapping the Referee Example to Mutation Calling

Referee Coin Toss Example

<u>Data</u>

Referees $1, \ldots, T$

For each Referee i

- Coin Tosses: N_i
- Count of heads: *x_i*
- Count of tails: $N_i x_i$

Parameters

Probability to draw coins: π_{fair} , π_{heads} , π_{tails} Probability of heads for 3 types of coins μ_{fair} , μ_{heads} , μ_{tails} Responsibilities

Probability that Referee *i* used coin k: $\gamma(Z_i = k)$

Mutation Calling from Sequencing Data

<u>Data</u>

Genomic loci $1,\ldots,T$

- For each locus *i*
 - Depth (total reads): N_i
 - Count of reference base: x_i
 - Count of variant base: $N_i x_i$

Parameters

Probability of genotypes: π_{AA} , π_{AB} , π_{BB} Probability of reference base for 3 genotypes:

 $\mu_{AA}, \ \mu_{AB}, \ \mu_{BB}$

Responsibilities

Probability that locus i has genotype k: $\gamma(Z_i = k)$

SNVMix: Probabilistic Model

Sequence Data

There are *T* different genomic loci with read depths $N = \{1, ..., N_T\}$ and reference base counts $x = \{1, ..., x_T\}$. There are K = 3 different possible genotypes *AA*, *AB*, *BB*

Mixture Model Setup

1. The probabilities for the genotypes are π_{AA} , π_{AB} , π_{BB}

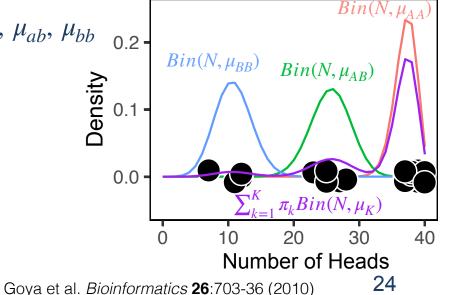
2. Thus, a specific genotype $k \in AA$, AB, BB can be assigned to the **latent state** Z_i at locus *i* with these probabilities

$$p(Z_i = k \mid \pi_{1:K}) = \begin{cases} \pi_{AA} \text{ if } k = AA \\ \pi_{AB} \text{ if } k = AB \\ \pi_{BB} \text{ if } k = BB \end{cases}$$

3. The **probability of observing a reference base** for the genotypes are μ_{aa} , μ_{ab} , μ_{bb}

4. The likelihood is a **3-component mixture of binomials** $p(x_i | N_i, \mu_{1:K}, \pi_{1:K}) = \sum_{k=1}^{K} \pi_k Bin(x_i | N_i, \mu_k)$

5. The **priors** for genotype $k \in \{aa, ab, bb\}$ in the model are $p(\pi_{1:K} | \delta_{1:K}) = Dirichlet(\pi_{1:K} | \delta_{1:K})$ $p(\mu_k | \alpha_k, \beta_k) = Beta(\mu_k | \alpha_k, \beta_k)$



SNVMix: Inference & parameter estimation using EM (revisited)

E-Step: compute responsibilities

1. What is the probability of locus *i* having genotype k?

$$\gamma(Z_i = k) = \frac{\pi_k Bin(x_i | N_i, \mu_k)}{\sum_{j=1}^K \pi_j Bin(x_i | N_i, \mu_j)}$$

Responsibilities

Matrix $T \times K$

M-Step: update parameters 2. What is the probability of genotype k?

$$\hat{\pi}_{k} = \frac{\sum_{i=1}^{T} \gamma(Z_{i} = k) + \delta(k) - 1}{\sum_{j=1}^{K} \left\{ \sum_{i=1}^{T} \gamma(Z_{i} = j) + \delta(j) - 1 \right\}}$$

MAP for π

3. What is the probability of observing a reference base for genotype k?

$$\hat{\mu}_{k} = \frac{\sum_{i=1}^{T} \gamma(Z_{i} = k) x_{i} + \alpha_{k} - 1}{\sum_{i=1}^{T} \gamma(Z_{i} = k) N_{i} + \alpha_{k} + \beta_{k} - 2}$$
 MAP for μ

Evaluate the log likelihood and log posterior: use updated parameters

 $\log \mathbb{P} = \sum_{i=1}^{T} \log \left(\sum_{k=1}^{K} \hat{\pi}_k Bin(x_i | \hat{\mu}_k, N_i) \right) + \log Dir(\hat{\pi}_k | \delta_k) + \sum_{k=1}^{K} \log Beta(\hat{\mu}_k | \alpha_k, \beta_k)$ Log posterior

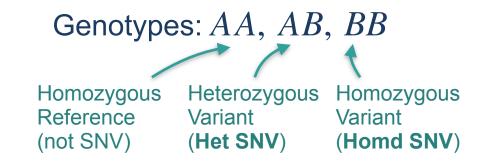
Iterate between E-Step and M-Step: stop when $\log \mathbb{P}$ changes less than ϵ compared to previous EM iteration.

FRED HUTCH

Recognition and Machine Learning. Springer

Chapter 9 in Bishop (2006). Pattern Section 3.3, 3.4, 11.2 in Murphy (2012). Machine Learning: A Probabilistic 25 Perspective. MIT Press

SNVMix: Calling somatic SNVs from genotype inference



Responsibilities						
Locus	AA	AB	BB			
1	$\gamma(Z_1 = AA)$	$\gamma(Z_1 = AB)$	$\gamma(Z_1 = BB)$			
2	$\gamma(Z_2 = AA)$	$\gamma(Z_2 = AB)$	$\gamma(Z_2 = BB)$			
3	$\gamma(Z_3 = AA)$	$\gamma(Z_3 = AB)$	$\gamma(Z_3 = BB)$			
т	$\gamma(Z_T = AA)$	$\gamma(Z_T = AB)$	$\gamma(Z_T = BB)$			

- To call a variant for each locus i, we can apply a threshold on the responsibilities $\gamma(Z_i)$
- We can sum $\gamma(Z_i = AB)$ and $\gamma(Z_i = BB)$ to get the overall probability (either genotype AB or BB) that locus *i* is a variant containing the non-reference allele (B)
- Additional steps required for filtering and determining if variant is somatic vs germline
 - Minimum 3 variant reads $(N_i x_i)$ is typically required
 - Account for mapping and base qualities of sequenced reads (i.e. SNVMix2)
 - Compare locus i in tumor sample to (1) matched normal sample, (2) germline databases

				Variant caller	Type of variant	Single-sample mode	Type of core algorithm
SNV Gen	otyping C	allers	-	BAYSIC [48]	SNV	No	Machine learning (ensemble caller)
				CaVEMan [34]	SNV	No	Joint genotype analysi
		Reference	ACTCCCGTCGGAACGAATGCCACG	deepSNV [38]	SNV	No	Allele frequency analysis
Variant Allele Fract	ion Analysis	Genome		EBCall [37]	SNV, indel	No	Allele frequency
			ACTCCCGTCGGAACCAATGCC		CD R I		analysis
Single sample			- CTCCCGTCGGAACCAATGCCACC CCCGTCGGAACCAATGCCACG	FaSD-somatic [31]	SNV	Yes	Joint genotype analys
			CGTCGGAACCAATGCCACG	FreeBayes [44]	SNV, indel	Yes	Haplotype analysis
			CATCGGAACCAATGCCACC	HapMuC [42]	SNV, indel	Yes	Haplotype analysis
Genotypes: A	A, AD, DD	Normal	GTCGGAACCAATGCCACG	JointSNVMix2 [30]	SNV	No	Joint genotype analys
			<mark>-</mark> <mark>C</mark> AATGCCACC	LocHap [43]	SNV, indel	No	Haplotype analysis
		a_N	CACC 12233556666 <mark>6</mark> 660777778773	LoFreq [36]	SNV, indel	Yes	Allele frequency analysis
Homozygous Hete	erozygous Homozy	$\operatorname{Allelic Counts} \operatorname{Allelic Counts} \operatorname{d_N} d_N$		LoLoPicker [39]	SNV	No	Allele frequency analysis
Reference Varia	ant Variant		ACTCCCGTCGG <mark>A</mark> AC <mark>C</mark> AATGCCACC	MutationSeq [45]	SNV	No	Machine learning
	SNV) (Homd		TCCCGTCGGAACCAATGCCACC	Muse [40]	SNV	No	Markov chain model
		SINV)	CCCGTCGGAACCAATGCCACC	MuTect [35]	SNV	Yes	Allele frequency
			GTCGG <mark>C</mark> ACCAATGCCACG CGG <mark>C</mark> ACCAATGCCACG	marcer[55]	5111	100	analysis
Joint tumor-normal		Tumour	GCACCAATGCCACG	SAMtools [8]	SNV, indel	Yes	Joint genotype analys
			AATGCCACG	Platypus [41]	SNV, indel, SV	Yes	Haplotype analysis
			CCAC <mark>G</mark>	qSNP [24]	SNV	No	Heuristic threshold
Joint Ger	notypes:	Allelic Counts $\frac{a_T}{d_T}$		RADIA [26]	SNV	No	Heuristic threshold
		Allelic Counts d_T	112333445566666777788888	Seurat [33]	SNV, indel, SV	No	Joint genotype analys
		Gerr	mline	Shimmer [25]	SNV, indel	No	Heuristic threshold
$g_N \backslash g$	T AA AB BB	Som	natic (AA,ÁB) (BB,BB) (AB,AB)	SNooPer [47]	SNV, indel	Yes	Machine learning
				SNVSniffer [32]	SNV, indel	Yes	Joint genotype analys
A	A 0.01 0.95 0.00			SOAPsnv [27]	SNV	No	Heuristic threshold
A	B 0.00 0.04 0.00			SomaticSeq [46]	SNV	No	Machine learning (ensemble caller)
				SomaticSniper [28]	SNV	No	Joint genotype analys
В	B 0.00 0.00 0.00			Strelka [17]	SNV, indel	No	Allele frequency analysis
				TVC [97]	SNV, indel, SV	Yes	Ion Torrent specific
				VarDict [18]	SNV, indel, SV	Yes	Heuristic threshold
 Cohort level or par 	iei: Machine Learn	ing (supervised)		VarScan2 [9]	SNV, indel	Yes	Heuristic threshold
				Virmid [29]	SNV	No	Joint genotype analys
FRED HUTCH	lointSNVMix. Roth et al. <i>E</i>	ioinformatics 28 :907-1	13 (2012)	Xu. Comput Stru	ıct Biotechno	<i>I.</i> 16 :15-24 (20)18) 2 /

Somatic SNV Detection using Joint Inference from Tumor-Normal Pairs

1.Latent variable state space

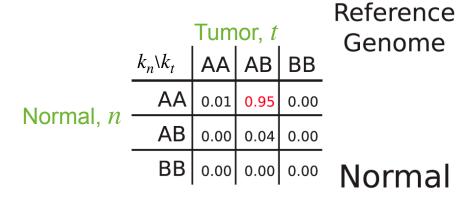
- 9 genotype pairs (k_n, k_t)
- $n, t \in \{AA, AB, BB\}$

2. Probability of the genotypes

• 9 mixture weights $\pi_{(k_n,k_t)}$

3.Joint binomial mixture model

- 9-component mixture model $p(x_i^n, x_i^t | N_i^n, N_i^t, \mu_{1:K}^n, \mu_{1:K}^t) = \sum_{k_n=1}^K \sum_{k_t=1}^K \pi_{(k_n, k_t)} Bin(x_i^n | N_i^n, \mu_{k_n}^n) Bin(x_i^t | N_i^t, \mu_{k_t}^t)$
- with 9 parameter tuples (μ^n, μ^t)
- FRED HUTCH



Allelic Counts

Tumour

Allelic Counts

		CG I	CGG	AAC	CAAI	GCC	ACG	
		C A T	ĊGG	AAC	CAAT	GCC	ACC	
		GT	ĊGG	AAC	CAAT	GCC	ACG	
					CAAT	GCC	ACC	
						C	ACC	
a_N	1223	3556	666	666	0777	778	773	
d_N	1223	3566	666	666	7777	778	777	
	ACTO	CCCGT	ĊGG	AAC	CAAT	GCC	AÇC	
	T(CCGT	ĊGG	AAC	CAAT	GCC	AÇC	
	(CCGT	CGG	AAC	CAAT	GCC	ACC	
		GT	CGG	CAC	CAAT	GCC	ACG	
			CGG	CAC	CAAT	GCC	ACG	
			G	CAC	CAAT	GCC	ACG	
					- AAT	GCC	ACG	
						- C C	ACG	
a_T		33344						
d_T		33344						
_			1		Ā		Ā	
Germlir	ne							
Somati	С	(AA,A	4B)	(BE	3,BB)		(AB,A	۱B

28

ACTCCCGTCGGAACGAATGCCACG

ACTCCCGTCGGAACCAATGCC - --

- CTCCCGTCGGAACCAATGCCACC

- CCCGTCGGAACCAATGCC

Roth et al. *Bioinformatics* **28**:907-13 (2012)

Homework #5: Single-nucleotide Genotype Caller

Implement a standard binomial mixture model described in Lecture 2.

- Learn the parameters and infer the genotypes
- Annotate the mutation status for a set of genomic loci.
- Expected outputs for each question will be provided so that you can check your code.
- RStudio Markdown and Python Jupyter Notebook templates provided.

Due: May 8th

Office Hours with Anna-Lisa Doebley (adoebley@uw.edu)

Zoom Meeting ID: 446 356 7725 Password: GS541

- Monday, May 4, 2-3pm
- Wednesday, May 6, 2-3pm

